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Abstract

Many data mining algorithms use privacy preserving set intersection operations. Private set op-
erations have considered semi-honest and malicious adversarial models in cryptographic settings.
Protocols in semi-honest model, requiring light computations, provide weak security. Protocols in
malicious model guarantee strong security at the price of expensive computations like homomor-
phic encryption and zero-knowledge proof. However, practical implementations require robust and
efficient protocols. In this paper, we build efficient and private set intersection avoiding the use of
expensive tools like homomorphic encryption and zero-knowledge proof. Our proposed set intersec-
tion protocol is constructed in game-theoretic model. In our model, the parties are viewed as rational
whereby they are assumed (only) to act in their self-interest. Our protocol satisfies computational
Nash equilibrium.

Keywords: Privacy, Set Intersection, Rational Cryptography, Computational Nash Equilibrium

1 Introduction

In data mining area, private set intersection protocol allows two parties interact on their respective input
sets. These protocols address several realistic privacy issues. For example, in healthcare industry, in-
surance companies often need to obtain information about their insured patients from other parties, such
as other insurance carriers or hospitals. The insurance carriers cannot disclose the identity of inquired
patients, whereas, the hospitals cannot provide any information on other patients. Fig.1 explains a set
intersection operation.

Privacy-preserving set intersection protocols use different models based on the adversarial behavior
assumptions. Semi-honest and malicious are the two categories of adversaries that have been consid-
ered in cryptography literature. Protocols secure in the presence of semi-honest or honest-but-curious
adversaries assume that parties honestly follow all protocol specifications and do not misrepresent any
information related to their inputs, e.g., set size and content (according to Goldreich’s definition [11]).
But, any party might passively attempt to infer additional information about the other party’s input dur-
ing or after protocol execution. To formalize this model, it is required that the parties involved in the
protocol do not learn more information that they would in an ideal scenario assuming a trusted third
party (TTP). Security in the presence of malicious parties allows arbitrary deviations from the protocol.
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Figure 1: Privacy-preserving set intersection

In general, however, it does not prevent parties from refusing to participate in the protocol, modifying
their private input sets, or prematurely aborting the protocol. Security in the malicious model is achieved
if the adversary (interacting in the real protocol, without the TTP) can learn no more information than it
could in the ideal scenario.

Protocols for some cryptographic tasks (e.g., secret sharing, multi-party computation) have begun to
be re-evaluated in a game-theoretic setting since the work of Halpern and Teague [12] (for an overview of
work in this direction, see [7, 19]). In game theoretic setting, parties are neither honest nor corrupt/mali-
cious but are viewed as rational and are assumed to act in their self-interest. This feature is particularly
interesting for data mining operations where huge collection of data is used, since parties will not deviate
(i.e., abort) as there is no incentive to do so.

1.1 Related Work

In general, there are two types of assumptions on data distribution: vertical and horizontal partitioning.
Secure distributed protocols have been developed for horizontally partitioned data for mining decision
trees [22], k-means clustering [21]. Secure protocols for the vertically partitioned case have been devel-
oped for mining association rules [30], and k-means clusters [14, 29]. All of those protocols claimed
to be secure only in the semi-honest model. In [8, 17], authors present two-party secure protocols in
the malicious model for data mining. They follow the generic malicious model definitions from the
cryptographic literature, and also focus on the security issues in the malicious model, and provide the
malicious versions of the subprotocols commonly used in previous privacy-preserving data mining algo-
rithms. Assuming that at least one party behaves in semi-honest model, they use threshold homomorphic
encryption for malicious adversaries presented by Cramer et al. [5]. Since homomorphic encryption
is considered too expensive [23] and zero-knowledge proof is often one of the most expensive parts of
cryptographic protocols, the protocols proposed in malicious adversarial model are not very practical
for operations on large data items. Set operations using commutative encryption have been proposed in
[2], where the adversaries have been considered as semi-honest parties. Game theory and data mining, in
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general, have been combined in [15, 18] for constructing various data mining algorithms. Rational adver-
saries have also been considered in privacy-preserving set operations [31, 3]. These protocols consider
Nash equilibrium to analyze the rational behavior of the participating entities. As in all of cryptography,
computational relaxations are meaningful and should be considered; doing so allows us to get around the
limitations of the information-theoretic setting. So, analyzing set operations from the viewpoint of com-
putational Nash equilibrium is interesting, since it gives a more realistic results. There have been several
works on game theory based MPC/secret sharing schemes [1, 12, 20, 24, 9, 28, 13]. But [12, 28] require
the continual involvement of the dealer even after the initial shares have been distributed or assume that
sufficiently many parties behave honestly during the computation phase. Some schemes [1, 20, 24] rely
on multiple invocations of protocols. Other work [13] relies on physical assumptions such as secure
envelopes and ballot boxes. [9] proposed efficient protocols for rational secret sharing. But secret shar-
ing schemes cannot be directly used for our purpose since they require much heavier computation, the
existence of TTP, and their set up is different.

1.2 Our Contribution

In this work, we build two-party private set intersection protocol in game-theoretic setting using crypto-
graphic primitives 1. It is assumed that parties are neither honest nor corrupt but are instead rational and
are assumed to act only in their self-interest. Our construction avoids the use of expensive cryptographic
tools like homomorphic encryption and zero-knowledge proof. We have used commutative encryption
as the underlying cryptographic primitive which is simple and efficient. The parties run the protocol in
a sequence of r rounds and learn the complete result at the end of the r-th round. Also, our construc-
tion does not rely on the existence of any trusted third party. It is also possible to use our protocol for
computing set-union operations. We also show that our protocol satisfies computational version of strict
Nash equilibrium. In short, our protocol achieves the following:

• Either of the parties may cheat with incorrect input. But cheating does not help any party to win
the game.

• At any round earlier than r, aborting the protocol does not give any higher pay off to the aborting
party than following the protocol.

Organization of the paper: The remainder of the paper is organized as follows: Section 2 presents
the background and preliminaries. Section 3 describes the protocol model. Section 4 includes protocol
construction. In Section 5, we analyze the protocol formally. Performance analysis in Section 6 is
followed by some concluding remarks in Section 7.

2 Background and Preliminary

In this section, we will state the definitions of computational Nash equilibrium and Commutative en-
cryption. A protocol is in Nash equilibrium if no deviations are advantageous. In other words, there is
no incentive to deviate in the case of a Nash equilibrium. We assume that a party exhibits its malicious
behavior by aborting early or sending non-participate message. However, a malicious party does not
manipulate its own datasets to provide wrong data. Preventing malicious parties from sharing false data
is difficult since the data are private and non-verifiable information. To prevent such malicious behavior,
there can be auditing mechanism where a TTP can verify the integrity of data. We denote the security

1A preliminary version of this paper appears at IEEE WAINA 2012 [27]. This is the full version. Full proof of Theorem 1,
performance analysis, and figures have been added in this version.
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parameter by n. A function ε is negligible if for all c > 0 there is a nc > 0 such that ε(n)< 1/nc for all
n > nc; let negl denote a generic negligible function. We say ε is noticeable if there exist c,nc such that
ε(n)> 1/nc for all n > nc.
We consider the strategies in our work as the PPT interactive Turing machines. Given a vector of strate-
gies ~σ for two parties in the computation phase, let u j(~σ) denote the expected utility of Pj, where the
expected utility is a function of the security parameter n. This expectation is taken over the randomness
of the players’ strategies. Following the standard game-theoretic notation, (σ ′j,~σ− j) denotes the strategy
vector ~σ with Pj’s strategy changed to σ ′j.

Definition 1. Π induces a computational Nash equilibrium if for any PPT strategy σ ′1 of P1 we have
u1(σ

′
1,σ2)≤ u1(σ1,σ2)+negl(n), and similarly for P2.

The following definition is stated for the case of a deviating P1 (definition for a deviating P2 is
analogous). Let P1 and P2 interact, following σ1 and σ2, respectively. Let mes denote the messages sent
by P1, but not including any messages sent by P1 after it writes to its (write-once) output tape. Then
viewΠ

2 includes the information given by the trusted party to P2, the random coins of P2, and the (partial)
transcript mes. We fix a strategy γ1 and an algorithm A. Now, let P1 and P2 interact, following γ1 and
σ2, respectively. Given the entire view of P1, algorithm A outputs an arbitrary part mes′ of mes. Then
viewA,γ1

2 includes the information given by the trusted party to P2, the random coins of P2, and the (partial)
transcript mes′.

Definition 2. Strategy γ1 yields equivalent play with respect to Π, denoted γ1 ≈Π, if there exists a PPT
algorithm A such that for all PPT distinguishers D
| Pr[D(1n,viewA,γ1

2 ) = 1]−Pr[D(1n,viewΠ
2 ) = 1] |≤ negl(n)

Commutative Encryption: Our definition of commutative encryption below is similar to the construc-
tions used in [4, 6, 10] and others. Informally, a commutative encryption is a pair of encryption functions
f and g such that f (g(v)) = g( f (v)).

Definition 3. Let ωk ∈ {0,1}n be a finite domain of n-bit numbers. Let D1 =D1(ωn) and D2 =D2(ωn) be
distributions over n. Let An(x) be an algorithm that, given x ∈ ωn, returns either true or false. We define
distribution D1 of random variable x ∈ ωn to be computationally indistinguishable from distribution D2
if for any family of PPT algorithms An(x), any polynomial p(n), and all sufficiently large n
Pr[An(x)|x ∈ D1]−Pr[An(x)|x ∈ D2]<

1
p(n)

where x is distributed according to D1 or D2, and Pr[An(x)] is the probability that An(x) returns true.

Definition 4. A commutative encryption F is a computable (in polynomial time) function f : KeyF ×
DomF → DomF, defined on finite computable domains, that satisfies all properties listed below. We
denote fe(x)≡ f (e,x).

(1) Commutativity: For all e,e′ ∈ KeyF we have fe ◦ fe′ = fe′ ◦ fe

(2) Each fe : DomF → DomF is a bijection.

(3) The inverse f−1
e is also computable in polynomial time given e.

(4) The distribution of 〈x, fe(x),y, fe(y)〉 is indistinguishable from the distribution of 〈x, fe(x),y,z〉,
where x,y,z ∈r DomF and e ∈r KeyF.

Informally, Property 1 says that when we compositely encrypt with two different keys, the result is
the same irrespective of the order of encryption. Property 2 says that two different values will never have
the same encrypted value. Property 3 says that given an encrypted value fe(x) and the encryption key e,
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we can find x in polynomial time. Property 4 says that given a value x and its encryption fe(x) (but not
the key e), for a new value y, we cannot distinguish between fe(y) and a random value z in polynomial
time. Thus we can neither encrypt y nor decrypt fe(y) in polynomial time. Note that this property holds
only if x is a random value from DomF , i.e., the adversary does not control the choice of x.

Remark: One-way functions exist under the discrete log-type hardness assumption; namely, expo-
nentiation modulo a prime p. To be precise, given that DomF is all quadratic residues modulo p where p
is a safe prime and q = (p−1)/2 such that p and q are primes, and KeyF is {1,2, . . .q−1}, the exponen-
tiation function fe(x) = xe mod p has the properties of commmutative encryption. That is, the powers
commute, each of the powers fe is a bijection with its inverse, and indistinguishability is satisfied under
the discrete log-type hard problem.

3 Model

In a typical protocol, parties are viewed as either honest or semi-honest/malicious. To model rationality,
we consider players’ utilities. Here we assume that F = { f : X ×Y → Z} is a functionality where
| X |=| Y | and their domain is polynomial in size (poly(n)). Let D be the domain of output which is
polynomial in size. The function returns a vector I that represents the set intersection where It is set
to one if item t is in the set intersection. In other words, for all the data items of the parties (i.e., X
and Y ), we will compute X ∩Y , and we get I as the output of the function. Clearly for calculating set
intersection, we need to calculate xl ∧ yl for each l where xl ∈ X and yl ∈ Y . Similarly, for set-union, we
need to calculate xl ∨ yl for all l. This can be rewritten as ¬(¬xl ∧¬yl). Computing the set-union is thus
straight forward.

Given that j parties are active during the computation phase, let the outcome o of the computation
phase be a vector of length j with o j = 1 iff the output of Pj is equal to the exact intersection (i.e., Pj

learns the correct output). Let ν j(o) be the utility of player Pj for the outcome o. Following [12, 9], we
make the following assumptions about the utility functions of the players:
- If o j > o′j, then ν(o j)> ν(o′j)
- If o j = o′j and ∑ j o j < ∑ j o′j, then ν(o j)> ν(o′j)

In other words, player Pj first prefers outcomes in which he learns the output; otherwise, Pj prefers
strategies in which the fewest number of other players learn the result (in our two-party case, the other
player learns). From the point of view of Pj, we consider the following three cases of utilities for the
outcome o where U∗ >U >U ′:
- If only Pj learns the output, then ν j(o) =U∗.
- If Pj learns the output and the other player does also, then ν j(o) =U .
- If Pj does not learn the output, then ν j(o) =U ′.
So, we have the expected utility of a party who outputs a random guess for the output (assuming other
party aborts without any output, or with the wrong output) as follows: Urand = 1

|D | ·U
∗+(1− 1

|D |) ·U
′.

Also, we assume that U > Urand ; else players have almost no incentive to run the computation phase
at all. As in [9], we make no distinction between outputting the wrong secret and outputting a special
‘don’t know’ symbol- both are considered as a failure to output the correct output.

4 Rational Set Intersection Protocol

4.1 An Overview of the Protocol

Let x denote the input of P1, let y denote the input of P2, and let f denote the set intersection function
they are trying to compute. Our protocol is composed of two stages, where the first stage can be viewed
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as a key generation stage and the second stage that computes the intersection takes place in a sequence
of r = r(n) iterations. More specifically, in the key generation stage the parties generate their encryption
keys. They also choose i∗ ∈ r according to some random distribution α in which step they can learn
the complete intersection result. In every round i ∈ {1, . . . ,r} the parties exchange the encrypted data
for the current round, which enables P1 and P2 to perform the Intersection Computation. Clearly, when
both parties are honest, the parties produce the same output result which is uniformly distributed. Briefly
speaking, the stages have the following form:
Key Generation Stage:

• Each party randomly chooses a secret key for itself, i.e. eS ∈ KeyF for P1 and eR ∈ KeyF for P2,
for commutative encryption.

• A value i∗ ∈ {1, . . . ,r} is chosen according to some random distribution 0 < α < 1 where α de-
pends on the players’ utilities (discussed later). This represents the iteration, in which parties will
learn the complete result.

Intersection Computation Stage:
In each iteration i, for i = 1, . . . ,r, the parties do the following: First, P2 sends c1 to P1 and then P1 sends
c2 to P2, where c1 and c2 are the ciphertexts computed by party P1 and P2 respectively. After receiving
the ciphertexts, P2 and P1 compute the set intersection using commutative property of the encryption
scheme. If a party aborts in some iteration i, then the other party outputs the value computed in the
previous iteration. If some party fails to follow the protocol, the other party aborts. In fact, it is rational
for Pj to follow the protocol as long as the expected gain of deviating is positive only if Pj aborts exactly
in iteration i∗; and is outweighed by the expected loss if Pj aborts before iteration i∗. The intersection
computation phase proceeds in a series of iterations, where each iteration consists of one message sent
by each party.

4.2 Protocol Construction

As described above, our protocol Π consists of two stages. Let p be an arbitrary polynomial, and set
r = p· | Y |. We implement the first stage of Π using a key generation algorithm. This functionality
returns required keys to each party. In the second stage of Π, the parties exchange their ciphertexts in
a sequence of r iterations. The protocol returns I at the end of the operations on all the data items as
follows:

Key Generation Stage:

• Each party randomly chooses a secret key e1 ∈ KeyF for P1 and e2 ∈ KeyF for P2 for commutative
encryption.

• A value i∗ ∈ {1, . . . ,r} is chosen according to some random distribution 0 < α < 1 where α de-
pends on the players’ utilities. This represents the iteration, in which parties will learn the complete
result.

Set Intersection Computation Stage:
for all i do

(1) P2 encrypts its input dataset Z2 = fe2(Y ) and sends Z2 to P1.

(2) P1 encrypts its input dataset Z1 = fe1(X) and sends Z1 to P2.

(3) For P2, if it has not received any message from P1 then output the result of iteration i−1 and halt.
Otherwise, compute Z′2 = fe2( fe1(X)) and sends the pairs 〈Z1,Z′2〉 to P1.
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(4) For P1, if it has not received any message from P2 then output the result of iteration i−1 and halt..
Otherwise, compute Z′1 = fe1( fe2(Y )). Also, from pairs 〈 fe1(x), fe2( fe1(x))〉 obtained in step 5 for
each x ∈ X , it creates pair 〈x, fe2( fe1(x))〉 replacing fe1(x) with corresponding x.

(5) For P1, for x ∈ X for which ( fe2( fe1(x)) ∈ Z′1, these values form the intersection result I = X ∩Y .

(6) P2 computes and outputs I similarly.

(a) Commutative Encryption (b) Exchange of Ciphertexts

Figure 2: Proposed Intersection Protocol for One Round

Fig. 1 simply describes the proposed protocol. Two parties, having R and S as their data sets,
and a and b as their secret keys, perform the intersection protocol using commutative encryption. We
provide an intuitive description of the computation phase. Let us assume that P1 has a set of data items
{Tokyo,London,Washington,Bei jing} and P2 has {Tokyo,Paris,Toronto,Rome}. At first, they encrypt
each of the items with their secret keys and exchange the ciphertexts with each other at each round (here,
we will have 4 rounds at most to complete the whole protocol). After a party receives the ciphertext from
the other party, it reencrypts the ciphertext using its own secret key. After they exchange such data items
at each round, due to the commutative property of the underlying encryption scheme, they will come to
know the intersection output (1 if the otems match, 0 otherwise). For this example, they will come to
know that Tokyo is the intersected result from round 1, and all the subsequent rounds will output 0. So,
the final result they will know only is the intersected value.

5 Protocol Analysis

Here we will give some intuition as to why the reconstruction phase of Π is a computational Nash
equilibrium for an appropriate choice of α . Let us assume that P2 follows the protocol, and P1 deviates
from the protocol. (It is easier to analyze the deviations by P2 since P2 starts in every iteration.) When
P1 aborts in some iteration i < i∗, the best strategy P1 can adopt is to output Zi∗

1 hoping that i = i∗. Fig. 3
shows us the protocol in many rounds.

Thus, following this strategy, the expected utility that P1 obtains can be calculated as follows:

• P1 aborts exactly in iteration i = i∗. In this case, the utility that P1 gets is at most U∗.

• When i < i∗, P1 has ‘no information’ about correct I and so the best it can do is guess. In this case,
the expected utility of P1 is at most Urand .
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(a) Protocol in Rounds with Deviation Attempt (b) Learning from Iteration

Figure 3: Protocol for Many Rounds

Considering the above, P1’s expected utility of following this strategy is at most:

α×U∗+(1−α)×Urand

Now, it is possible to set the value of α such that the expected utility of this strategy is strictly less
than U , since Urand < U by assumption. In such a case, P1 has no incentive to deviate. Since there is
always a unique valid message a party can send and anything else is treated as an abort, it follows that
the protocol Π induces a computational Nash equilibrium.

Theorem 1. The protocol Π induces a computational Nash equilibrium given that 0 < α < 1, U >
α×U∗+(1−α)×Urand , and the properties of commutative encryption.

Proof: We first show that Π is a valid set intersection protocol. The proof method is similar to that
of [9]. Computational secrecy follows from the proof, below, that the intersection computation is a com-
putational Nash equilibrium. Because if secrecy did not hold then computing the output locally and not
participating in the intersection computation phase at all would be a profitable deviation. We next focus
on correctness. Assuming both parties run the protocol honestly, the output is computed correctly if the
properties of commutative encryption are not achieved, which has negligible probability. We next show
that Π induces a computational Nash equilibrium. Assume P2 follows the strategy σ2 prescribed by the
protocol, and let σ ′1 denote any PPT strategy followed by P1. (The other case, where P1 follows the
protocol and we look at deviations by P2, follows similarly with an even simpler approach.) In a given
execution of the computation phase, let i denote the iteration in which P1 aborts (where an incorrect
message is viewed as an abort); if P1 never aborts then set i = 1. Let early be the event that i < i∗; let
exact be the event that i = i∗; and let late be the event that i > i∗. Let correct be the event that P1 outputs
the correct output. We will consider the probabilities of these events in two experiments: the experiment
defined by running the actual intersection computation scheme, and a second experiment where P1 is
given Z1, t1 chosen uniformly at random from the appropriate ranges. We denote the probabilities in the
first experiment by Prreal[·], and the probabilities in the second experiment by Prideal[·]. We have the
following equation using the fact (as discussed above) that whenever late occurs P2 outputs the correct
result. Since when both parties follow the protocol P1 gets utility U , we need to show that there exists a
negligible function ε such that u1(σ

′
1,σ2)≤U + ε(n):

u1(σ
′
1,σ2)≤U∗×Prreal[exact]+U∗×Prreal[correct∧early]+U ′×Prreal[correct∧early]+U×Prreal[late]
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Now we have the following claim that follows from the indistinguishability property of commutative en-
cryption:
Claim 1: There exists a negligible function ε such that

| Prreal[exact] − Prideal[exact] |≤ ε(n)

| Prreal[late] − Prideal[late] |≤ ε(n)

| Prreal[correct ∧ early] − Prideal[correct ∧ early] |≤ ε(n)

| Prreal[correct ∧ early] − Prideal[correct ∧ early] |≤ ε(n)

Now, we have Uideal =U∗ ·Prideal[exact]+U∗ ·Prideal[correct∧early]+U ′ ·Prideal[correct∧early]+
U ·Prideal[late]

From Claim 1 we get that | u1(σ
′
1,σ2)−Uideal |≤ ε(n) for some negligible ε . We bound Uideal

as follows: Let abort = exact ∨ early, so that abort is the event that P1 aborts before iteration i∗+ 1.
We have Prideal[exact | abort] = α and Prideal[correct | early] = 1/D . It is easy to find that Uideal =
U +(α ·U∗+(1−α) ·Urand −U) ·Prideal[abort] ≤U given that α ·U∗+(1−α) ·Urand −U < 0. This
shows that Π induces a computational Nash equilibrium.

6 Efficiency Analysis

The complexity of secure intercetion protocol proposed in Kantarcioglu can be expressed as O(n) where
n is the size of the input dataset, in other words the size of data items to be processed. Therefore, the
efficiency of the protocol is highly dependent on the size of the input dataset. The complexity displayed
in Table 1 involves both communication and computation times, and the difference can be explained with
the impact of communication and computation overhead that the ZK proof brings. While the overhead
of ciphertext computation and communication in our protocol are similar to that in Kantarcioglu’s work,
we do not need any computation and communication of ZK proof in our protocol. This is a drastic
reduction in computation and communication cost. In our work, the round complexity is linear to the
number of items and the inverse of geometric distribution α . As discussed earlier, use of ZK proof
and homomorphic encryption leads to inefficiency in practical world and we want to avoid using the
expensive tool like ZK proofs and homomorphic encryptions. Note that in [26], the use of Verifiable
Random Function (VRF) has made the protocol an expensive one.

Table 1: Secure Set-Intersection: Performance Comparison
Schemes Computation Communication Round Tools

ciphertext ZKP ciphertext ZKP
Malicious ([17]) O(n) O(n) O(n) O(n) O(n) Homomorphic, ZKP
Malicious ([8]) O(n) O(1) O(n) O(1) O(n) Homomorphic, ZKP
Covert ([25]) O(n) − O(n) − O(1) Homomorphic

Rational ([26]) O(n) − O(n) − O(nα−1) VRF
Rational (This work) O(n) − O(n) − O(nα−1) Commutative

While it is difficult to compare our protocols in malicious and rational models due to their construc-
tion methods, here our table shows the comparison based on the number of data items to be processed.
As for the other parameters in rational model, the share size is |t|+O(k), where t is the size of data items
and k is the security parameter. The round complexity of the protocol for each item is O(α−1), where α

is the geometric distribution used to pick up the value of i∗ (typically, we will need only two rounds for
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each items in our protocol). Clearly, the our model requires much lighter computation than the protocol
designed in malicious, model and performs even better than the covert or rational model ([26]) in terms
of computational overhead due to the fact that VRF, homomorphic encryption and ZKP are expensive
tools.

7 Conclusion

We have proposed a private two-party set intersection protocol using commutative encryption as the un-
derlying cryptographic primitive. Our protocol is in rational model whereby parties are viewed neither
malicious nor semi-honest. We avoid relying on expensive cryptographic tools like homomorphic en-
cryption and zero knowledge proof. Our protocol satisfies computational Nash equilibrium. As for the
future work achieving a more advanced gane-theoretic property ’strict computational Nash equilibrium’
in multi-party environment would be interesting.
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