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Abstract 

Anomaly-based Intrusion Detection System (IDS) is a type of IDS that detects abnormal behaviors 

by analyzing system activity and network traffic. Anomaly-based IDS works by establishing a 

baseline of normal behavior for a system or a network. However, these types of systems are less 

used compared to signature-based IDS for one primary challenge: How to define this normal 

behavior baseline? The answer to this question is complicated, since it involves not only analyzing 

or learning from historical data, but requires an understanding of the business domain the system is 

implemented in. The present study proposes a novel approach to constructing an unsupervised data 

classifier that combines both Particle Swarm Optimization (PSO) and clustering techniques for 

anomaly detection. The primary objective of this methodology is to surmount the limitations that 

conventional clustering algorithms suffer from, such as their inability to identify non-linear patterns 

within the data, susceptibility to initial conditions, and difficulty in overcoming the problem of local 

optima. The concept of particle systems is discussed by examining their origins, search strategies, 

and convergence mechanisms.  We use a variant of the Particle Swarm Optimization called Dynamic 

Inertia Weight-Particle Swarm optimization (DIW-PSO) for our clustering process, and we 

elaborate on the reasoning behind this decision. Subsequently, we describe the labeling algorithm 

used for the resulting clusters and we explain the process for identifying anomalous clusters. We 

have demonstrated the effectiveness of our method by applying it to an intelligent irrigation control 

system for cotton plants. The results show that our classifier was able to accurately detect abnormal 

patterns that deviated from the optimal water requirements and growth conditions of the plants. 

Keywords: Particle Swarm Optimization, Intrusion Detection, Machine Learning, Clustering, 

Precise Irrigation. 

1 Introduction 

Throughout history, individuals from various communities around the world have utilized birds to help 

them explore their surrounding space and forecast weather. Nomadic tribes, for example, who used to 
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prospect new places to settle in, used the presence of birds as an indication of a nearby spring, because 

most of the times, birds fly around areas with abundant supply of water. Also, people in the past, used 

to observe the behaviors of birds in order to forecast weather, for instance, if birds are observed flying 

high in the sky, this typically indicates fair weather, on the other hand, if they are flying low this serves 

as a warning of inclement weather to come. If a storm is approaching, birds will stop flying and seek 

refuge at coast. It is obvious that our ancestors were interpreting birds’ behaviors to predict specific 

patterns in space and time (Wyndham, F. S., Park, K. E. (2018)). 

We believe that two crucial strategies underlie theses advanced sensory and adaptive capabilities of 

birds:  

The First strategy is flying in a flock: this allows the flock to collectively have a much wider field of 

vision than any individual bird could achieve on its own. Also, birds flying in a flock can take advantage 

of the air currents created by the birds in front of them. By flying slightly behind and to the side of the 

bird in front, each bird can benefit from reduced air resistance and therefore use less energy to maintain 

its speed and altitude. This allows the birds to fly for longer distances without becoming fatigued, which 

in turn allows them to cover more ground and spot potential food sources, atmospheric depressions and 

predators from a greater distance. 

The second strategy is pragmatic foraging, birds select food on a benefit to coast basis (Moermond, 

T. C. (1990)), which means, if the energy required to obtain the food exceeds the energy gained from 

consuming it, and then it is not a worthwhile option for the birds. By selecting the most energy-efficient 

food sites, birds can optimize their energy expenditure while foraging.  

These birds’ mechanisms surpass avian biology, and can be extended to address a broad spectrum of 

problems including data patterns exploration and analysis. 

In this work we use a variant of Particles Swarm optimization (PSO) called Dynamic Inertia weight 

PSO (DIW-PSO) algorithm which enforces the energy optimization strategy while exploring optimal 

clusters in data. In fact, the algorithm begins by emphasizing global searching, taking advantage of the 

birds' initial burst of energy. As the number of iterations decreases, the algorithm gradually shifts 

towards prioritizing local searching. The aim is to build an anomaly classifier that groups instances of 

data into clusters based on their similarities. Each cluster represents a group of similar behaviors or 

patterns, and by analyzing each cluster, the classifier distinguishes normal instances from anomalous 

ones.  

Although various approaches for anomaly detection rely on observing the data traffic in the system 

to identify targeted attacks or some specific suspicious behaviors, this article presents an alternative 

method for protecting the system. Our approach involves monitoring the behavior and performance of 

the entire system, including its components, such as devices, routers, and sensors. This approach offers 

a comprehensive view of the network performance and helps to identify a wide range of potential 

vulnerabilities. 

In terms of building the classifier, many clustering methods, including FCM and K-MEANS and 

even the standard version of PSO, are commonly used in anomaly detection. However, only a few 

clustering algorithms can guarantee a global optimal solution. Therefore, in order to find global optimal 

clusters, we investigated the efficacy of inertia weight in enhancing the quality of clusters. We use a 

variant of the Particle Swarm Optimization (PSO) algorithm, which we have coined DIW-PSO. 

At the beginning, the paper provides an overview of various Intrusion Detection Systems (IDS) along 

with their respective detection techniques, benefits, and limitations, in addition to highlighting their 
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essential components. Subsequently, the paper elucidates on the origins and underlying dynamics of 

particle systems.  

A dedicated section is then allocated to discuss the Inertia Weight parameter and its potential impact 

on enhancing clustering outcomes. The paper then proceeds to explicate the proposed methodology for 

anomaly detection, encompassing the initiation and labeling of clusters, as well as the mechanism for 

anomaly detection. Finally, the proposed approach is applied to a practical scenario of anomaly detection 

in an intelligent irrigation control system for cotton plants. 

The results revealed the classifier's capability to identify the abnormal patterns, which are not 

consistent with the plant's growth conditions and water requirements. 

2 Review of IDS Systems 

An IDS (Intrusion Detection System) is a system that monitors network data to identify potential 

malicious activity and generate alerts in response. Some IDS systems also have the ability to take action, 

such as blocking traffic from suspicious IP or MAC addresses when malicious activity or anomalous 

traffic is detected. The primary functions of an IDS are anomaly detection and reporting, but it can also 

perform additional tasks to protect against intrusions. 

Types of IDSs 

Intrusion detection systems can broadly be classified based on two parameters: 

1. The scope of protection: This parameter refers to the nature of data the IDS collects and monitors 

in order to detect anomalies. There are two main types of IDS based on this parameter: host-

based and network-based. Host-based IDS systems collect data from sources within the device, 

such as the device logs, and monitor the execution of programs on the device. These systems 

are useful for detecting intrusions at the device level, but may not be as effective at the network-

level. Network-based IDS systems, on the other hand, collect network packets by using network 

devices that are set to promiscuous mode, which allows them to capture all traffic on the 

network. These systems may also have nodes deployed at strategic locations on the network to 

inspect traffic and monitor activity. Network-based IDS systems are useful for detecting 

network-level threats, but may not provide as much protection at the device level as host-based 

systems. 

2. The detection pattern: There are two main types of detection patterns: misuse detection (also 

known as signature detection) and anomaly detection. Misuse detection systems examine the 

activity of the entire infrastructure for patterns of misuse that are already stored in a signature 

database, often referred to as attack identities. These systems are able to detect known attacks and 

intrusions based on their specific patterns of behavior. Anomaly detection systems, on the other 

hand, analyze the behavior of the protected system over time to determine what is considered 

normal or legitimate behavior. Any action that significantly deviates from this baseline is viewed 

as an attack or intrusion. These systems are able to detect unknown attacks and intrusions by 

identifying unusual behavior. 

An effective IDS should be able to accurately detect intrusions without mistaking legitimate actions 

for malicious ones. In the case of anomaly-based intrusion detection systems, two performance metrics 

are commonly used to evaluate the system's efficiency: the detection rate (DR) and the false alarm rate 

(FAR). The detection rate is the proportion of correctly detected attacks to the total number of attacks, 

while the false alarm rate is the proportion of normal connections that are incorrectly classified as attacks 
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to the total number of normal connections. To be efficient, an IDS should maximize the detection rate 

while keeping the false alarm rate low. 

Challenges and Proposed Solutions for IDSs 

As discussed, intrusion detection systems (IDS) can be divided into two main categories: signature-

based detection (also known as "misuse detection") and anomaly detection. Signature-based detection is 

effective at detecting known attacks and is used by tools such as Snort (Roesch, M. (1999)) and Suricata. 

However, it can only detect attacks that are already included in its database. On the other hand, anomaly 

detection-based IDS can detect unknown attacks, but it often generates a high number of false alarms 

(Grill, M., Pevný, T., Rehak, M. (2017)). 

Recently, there has been a focus on improving anomaly-based intrusion detection systems (IDSs) 

due to their ability to detect unknown attacks. Machine learning techniques, have been proposed as a 

means to improve these systems. These techniques allow the system to learn from data without requiring 

explicit programming. However, despite the benefits of using anomaly detection algorithms, misuse 

detection is still more commonly used in practice (Giorgi, G., 2022). 

There have been efforts to use supervised machine learning techniques to improve the performance 

of anomaly-based IDSs (Aboueata, N.(2019; Liu, H., Lang, B. (2019)), but these approaches have shown 

limitations as well, because IDS improve false alarm rate and detection accuracy only on training 

datasets, which is not sufficient to effectively detect attacks in real-world scenarios, the system must be 

re-trained on the specific network to be monitored, which requires labeled datasets containing real-world 

attacks, which can be difficult to obtain. Instead, it may be more effective to focus on unsupervised 

machine learning techniques that can learn and adapt without the need for labels. This paper is a 

contribution in that respect. 

3 Related Works 

A number of different approaches have been proposed for building unsupervised anomaly detection 

classifiers (Al-Imran, M., Ripon, S. H. (2021)). One popular approach is to use statistical methods, such 

as the Mahalanobis distance or kernel density estimation, to calculate a score for each data point that 

indicates how anomalous it is relative to the rest of the dataset. Alternatively, some researchers have 

explored the use of deep learning methods, such as auto-encoders or variational auto-encoders, to learn 

a compressed representation of the data and then identify points that are poorly reconstructed as 

anomalous. 

A study by Chalapathy, R. (2019) compared the performance of several deep learning-based methods 

on a range of datasets and found that autoencoders and variational autoencoders tended to perform well, 

but again noted that the optimal approach varied depending on the specifics of the dataset. 

When it comes to clustering algotthms, Overall, the choice of an approach for unsupervised anomaly 

detection will depend on the specific requirements of the task at hand, such as the size and complexity 

of the dataset, the desired level of sensitivity and specificity, a careful evaluation of the performance of 

different approaches on relevant benchmark datasets is recommended to determine the most effective 

approach for a given task. 
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4 A Retrospective Examination of Particle Systems and Particle Swarm 

Optimization History of Particle Systems 

The term "particle systems" was coined for the first time by William T. Reeves in his 1983 paper 

"Particle Systems - A Technique for Modeling a Class of Fuzzy Objects” Reeves, W. T. (1983). In his 

publication, Reeves explained how he developed the concept of particle systems for use in computer 

graphics, particularly in the production of the film Star Trek II: The Wrath of Khan. William T. Reeves 

created visually appealing graphics depicting fuzzy objects by utilizing autonomous entities known as 

"particles" that move based on the local effects they have on each other. Before the invention of particle 

systems, computer graphics were mainly created using polygons and edges. The introduction of particle 

systems allowed the creation of objects with softer, more natural edges and enabled the representation 

of a wide range of complex effects, such as snow, rain, fire, clouds, and swarms of bees. This new 

paradigm expanded the capabilities of computer graphics and allowed the creation of more realistic and 

dynamic visual effects.  

The success of the particle systems has gone beyond computer graphics and they have been used to 

model group movements of ant and bee colonies, biological cells, robot team movement etc. what’s 

interesting is that, even though the movement of each particle is predetermined, the interactions between 

these particles in a population can result in a very sophisticated collective behavior. This phenomenon 

is referred to as “self-organization” and enables the entire particle system to move as if it were a single 

entity, composed of separate individuals. Following all these successes, researchers extended the use of 

particle systems to other optimization problems such as data mining and machine learning, and Particle 

Swarm Optimization algorithm we will present below, is a concrete example of this extension. 

Particle Swarm Optimization  

PSO, has been introduced for the first time by Eberhart and Kennedy in 1995, this algorithm utilizes the 

principles of particle systems to solve problems, particularly in high-dimensional spaces. It is based on 

a model of social interactions among agents and draws inspiration from the coordinated dynamics of 

animal groups (Eberhat, R., Kennedy, J. (1995)) to search for solutions to problems. 

Collective behaviors, such as flocking, emerge from the application of simple, generic rules that are 

independent of time and location. Craig Reynolds, a computer scientist who is known for his research 

and development work in the field of artificial life and simulation. He is particularly known for his boids 

algorithm, which simulates the flocking behavior of birds, indicated that the shape of the entire flock is 

a result of the individual behavior of birds, which follow three primary rules:  

• Separation: it allows the birds to avoid their neighbors by adjusting their physical position; 

• Alignment: it allows the birds lining up with agents close by; 

• Cohesion:  it allows individuals to move toward the average position of local flock mates. 

 

Figure 1: The Three Flocking Rules of the Swarm 
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To form a swarm, each bird has a position. A velocity vector and has some awareness of everything 

happening around it in some vicinity but has little visibility outside that vicinity. 

The PSO algorithm maintains a population of particles (the swarm). Each one is defined by its 

location in a multidimensional search space. Every particle represents a potential solution to the 

optimization problem at hand.  

Particles begin at random locations in a search space and move towards potential minima (or maxima) 

of an objective function. These particles communicate and update their positions based on the positions 

of other particles in the swarm and the quality of their own positions. Through repeated iterations and 

calculations, the particles eventually converge on one or more optimal solutions. There are various 

factors that can influence the effectiveness of PSO, including the size of the swarm, the communication 

patterns among the particles, the initial positions of the particles, the search mechanism and the function 

being optimized. Figure 2 shows an example of the swarm convergence. 

 

Figure 2: Illustration of the Convergence of the Swarm Over Optima 

The particle movement is computed as follows: 

• xi(t+1) = xi(t)+vi(t) (1) 

• vi(t+1)=wvi(t)+c1r1(pbesti(t)-xi(t))+c2r2(gbest(t)- xi(t))  (2) 

xi(t) is the position of particle i at time t, vi(t) is the velocity of particle i at time t, w is an inertia 

factor with values between 0 and 1, pbesti(t) is the best position found by particle i so far, gbest(t) is the 

best position found by the swarm so far, c1 is the cognitive parameter and c2 is the social parameter. r1 

and r2 are random variables between 0 and 1. 

Figure 3, presents the flow chart of the general particle swarm optimization algorithm.  

 

Figure 3: Flowchart of the Particle Swarm Optimization Algorithm 
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5 Particle Swarm Optimization and Improved Clustering 

Conventional clustering algorithms, such as K-means, DBSCAN, PAM clustering, and hierarchical 

clustering, typically presume convex-shaped or spherical shaped-clusters (Sun, D., Toh, K. C., & Yuan, 

Y. (2021)) while real life data may contain irregularities, and clusters can be of different shapes. K-

means, the well-known clustering algorithm, is known for its sensitivity to initialization, incorrect 

initialization can result in incorrect cluster assignments, leading to misclassification of anomalies. 

That’s where, PSO algorithm came into play, since it makes no assumptions concerning the geometry 

of clusters. PSC is not limited to any particular cluster shape. Instead, it relies on the collective behavior 

of the particles to adapt and converge to cluster solutions that minimize an objective function, which is 

typically associated with intra-cluster similarity and inter-cluster dissimilarity. In addition, PSO 

mitigates the influence of initial conditions by incorporating a population of particles that explore the 

search space. Particles search collectively an optimal cluster configuration, increasing the probability of 

detecting a globally optimal or near-optimal solution. 

Setting the Inertia Weight for PSO  

The inertia weight is the most critical parameter that regulates both exploration and exploitation, thus, 

judiciously selecting the inertia value will significantly improve the PSO algorithm associated solution, 

and will improve cluster quality when applied to clustering. 

The inertia weight parameter is used to control the speed of the flying swarm particles. It determines 

how much a particle's previous velocity affects its velocity at the current time step. 

The original PSO, introduced by Eberhart and Kennedy, did not include inertia weight.  

However, the algorithm has suffered from the following issues:  

• The particles may get stuck in local optima;  

• The particles oscillate in the search space, they move back and forth between two positions without 

making any progress towards the optimal solution. 

• The algorithm may converge too quickly or too slowly. 

In 1998, Shi and Eberhart introduced the concept of Inertia Weight with a constant value. They 

concluded that a large Inertia Weight encourages global searching and a small one favors local searching. 

To gain further insights on how the inertia weight impacts the PSO algorithm, we performed an 

experiment using the Griewank function.  

In fact, the Griewank function has a complex topology and has many local minima and a single global 

minimum. Clustering algorithms can be evaluated by how well they can find the global minimum of the 

Griewank function. If a clustering algorithm can successfully find the global minimum of the Griewank 

function, then it is likely that it will be able to successfully group data points into meaningful clusters. 

The experimental parameters included a generation limit of 200, 40 particles, a precision of 10E-10, 

an individual factor of 1, and a collective factor of 1. Three different inertia values were chosen for 

analysis, namely 0.1, 0.15, and 0.2. 

We selected the best result after 20 repetitions for each w value. 

From the experiments conducted, it is clear that when the swarm particle speed is very big (large 

inertia weight) the optimal fitness solution can be easily skipped although the swarm convergence is 
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very quick. On the other hand, when the particle speed (small inertia weight) is very slow, the swarm 

convergence is also slow and can be trapped easily in a local minimum.  

The idea, is to use a linear decreasing weight factor that allows both local and global searching, where 

the algorithm initially prioritizes global searching at first (large inertia weight) then gradually shifts 

towards favoring local searching as the iterations progress (small inertia weights). In that respect, we 

used the following equation:  

Equation 1: Formula of the inertia weight 

𝑾 = 𝑾𝒎𝒂𝒙 −𝑲 ×
𝑾𝒎𝒂𝒙 −𝑾𝒎𝒊𝒏

𝒊𝒕𝒆𝒓𝒔
 

• Wmax is the Maximal inertia weight;  

• Wmin is the minimal inertia weight;  

• Iters is the number of iterations;  

• The variable "k" will be assigned to each number in the range [0, iters], one at a time, as the loop 

iterates. 

DIW-PSO, is the name we have given to this particular variant of PSO which utilizes this inertia 

equation. 

 

Figure 4: PSO Convergence with Inertia Weight Equals to 0.1 

 

Figure 5: PSO Convergence with Inertia Weight Equals to 0.15 
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Figure 6: PSO Convergence with Inertia Weight Equals to 0.2 

Our Methodology for Anomaly Detection  

From a machine learning perspective, the anomaly detection can be approached as a classification or a 

clustering problem (Eskin, E., Portnoy, L., Stolfo, S. (2001), Bohara, B. (2020), El Bekri, M. (2019)). 

One way that clustering can be used for anomaly detection is by first grouping the data into normal 

clusters. Then, the data points that fall outside these normal clusters or far from the cluster centers can 

be considered as anomalies. For this purpose, we will use DIW-PSO algorithm for clustering. As in other 

PSO applications, each particle represents a solution to the problem. Through DIW-PSO, we seek 

finding similarities between data points and forming clusters by minimizing the distance between data 

points. The fitness function we seek to optimize is the Sum of Squared Error (SSE) (Raitoharju, J. 

(2017)):  

 where dnc is the Euclidean distance between the centroid and the point. By minimizing SSE, 

we obtain better results. 

In that sense, the anomaly detection system we want to build must follow these steps:  

1. Setting the initial clusters; 

2. Labeling clusters as ‘normal’ or ‘anomalous’;  

3. Using the labeled clusters to classify network data. 

We will explain, below, the three steps in detail:  

1. Setting the Initial Clusters 

In order to determine the optimal number of clusters, we have used the "elbow" method. After, we 

encode the search space or the dataset. In fact, each particle is a vector of I integers, where the jth element 

represents the cluster label assigned to element j, j ∈ {1, ..., I} and I is the number of data elements to 

regroup; which means that each particle represents a given configuration of clusters. 

2. Labeling Clusters 

After the convergence of the algorithm, we can label the resulting clusters; this is based on the following 

three assumptions: 
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• The number of normal instances in a training database is larger than the number of anomalous 

instances. This is because the goal is to teach the system the normal profile. 

• The characteristics of an anomalous instance are different from those of a normal instance. 

• Some types of anomalous instances have similar patterns and their characteristics are slightly 

different. 

In other words, instances that appear as small clusters will be labeled as anomalies because the 

number of normal instances is larger than the number of intrusions according to assumption number 1, 

which means that normal instances should form large clusters, while anomalous data tend to belong to 

small clusters. 

According to assumption n°2, anomalous and normal instances should not exist in the same cluster; 

and according to assumption n°3, a cluster containing such anomalous types of instances will be dense. 

We can, hence, extend theses three assumptions to a fourth assumption which states that: if a cluster has 

low density, it means that it is a normal cluster. 

Thus, the new labeling process will be as follows:  

• If a cluster is extremely dense, label it as anomalous; 

• If a cluster is small, label it as anomalous;  

• If a cluster is large but very dispersed, label it as anomalous  

• In other cases, label it as normal; 

 

Figure 7: The Labeling Process 

3. Detecting Anomalies 

Once the clusters are created and labeled from the training set, the system will be ready to detect 

anomalies. Given x a data point that will be scaled to x', we calculate the distance between x’ and the 

centroids of the different clusters using the distance metric used for cluster construction, the instance 

will be associated with the closest cluster and will carry its label which can be normal or anomalous. 
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Figure 8: The Steps of Building the Anomaly Classifier 

In other words, the quality of the anomaly detection will depend on the quality of the built classifier 

and the quality of the formed clusters. 

6 A Use Case: Anomaly Detection in Intelligent Irrigation Control System 

The Functions Performed by the Intelligent Irrigation Control System  

In machine learning, the effectiveness of your models is dependent on how well they perform in actual 

usage scenarios. The use case scenario we selected is an intelligent irrigation control system for cotton 

farming in which humidity and temperature sensors implemented in the field transmit information at a 

well-defined frequency to the microcontroller that controls the flow of water to be distributed through 

drip irrigation lines. (see Figure 9). 

The objective of this system is to automate the irrigation process while optimizing water use. It should 

perform four main functions: 

1) Continuously monitor the amount of moisture, temperature and water available for the plants;  

2) Determine whether watering is necessary for the plants based on the information obtained from 

the sensors; 

3) Provide the exact (or approximate) amount of water required by the plants.  

4) Interrupt the supply of water when the required amount of water has been delivered to the plants. 

This feature is important because the amount of water available is often scarce and optimization 

is essential. 

 

Figure 9: Intelligent Irrigation Control System Diagram 
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Cotton Cultivation, Optimal Growth Conditions 

Understanding the business domain is critical for establishing a baseline of normal behavior in the 

system or network being analyzed. It gives context and insights into the system's intended functionality, 

purpose, and expected behavior patterns. Different systems have different functions, and what may be 

normal for cotton farming for example may be abnormal for corn farming. Furthermore, environmental 

factors such as seasonal variations, earth condition and geographical locations should be considered to 

avoid false positives and negatives in anomaly identification. 

The cotton plant is a plant that needs a long frost-free period, a lot of heat and a lot of sun. It prefers 

warm and humid climates. The seeds will have a low germination rate if the soil temperature is below 

15°C during active growth, the optimal temperature is between 21 and 37°C. Temperatures well above 

37°C are not desirable, however, the cotton plant can survive temperatures approaching 45°C for short 

periods of time, but this also depends on humidity levels. 

 

Figure 10: Image of a Cotton Field (Source: Pixabay) 

International references in terms of optimal humidity levels for cotton widely applicable for the three 

main types of soil are summarized in table 1 (The unit of measurement is volumetric water content 

(VWC)): 

Table 1: Cotton Moisture Levels 

Type of soil No irrigation needed(bar) Irrigation to apply Dangerously low soil moisture 

clay 80-100 60-80 Under 60 

Loamy soil 88-100 70-88 Under 70 

Sandy 

soil 

90-100 80-90 Under 80 

How the Anomaly based IDS can Protect the Intelligent Irrigation Control System  

The role of the anomaly-based IDS is to continually assess the functioning of the intelligent irrigation 

control system by tracking the combination of humidity, temperature, and water flow in order to detect 

any deviation from the normal irrigation pattern that may indicate a problem, such as a broken irrigation 

line, a clogged water dropper, a hijacked or a damaged sensor, or the decision unit etc.  

The Machine Learning Model Used and the Establishment of the Baseline of Normal Behavior 

It is important to create a machine-learning model that must be updated on a regular basis to guarantee 

its continued precision in producing results. In the case of cotton irrigation, it is crucial to remember that 

the water requirements of plants, soil properties, and weather conditions are all dynamic factors that are 

subject to change. Failing to update the model can lead to errors and ultimately harm the crop. 
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Our approach involves the stages below to establish the baseline of normal behavior:  

1. Data Preparation: It includes handling missing values, normalizing characteristics, and selecting 

relevant attributes that are essential for the clustering process. This way the data is refined and 

made suitable for an effective clustering. 

2. Parameter Fine-tuning of the clustering Algorithm: The parameters of the clustering algorithm 

are refined and optimized to enhance its performance. This involves running benchmakrs under 

different parameters to identify the best configuration for achieving imporved, accurate and 

meaningful clustering results.  

3. Apply the clustering algorithm, in our case we have used DIW-PSO;  

4. Determination of the Number of Clusters: By selecting the appropriate number of clusters, the 

granularity and level of detail in defining normal behavior patterns can be effectively established, 

in our case we used the elbow technique to determine the number of clusters. 

5. Establishment of the Labeling Procedure for Clustering: A labeling procedure is established to 

assign meaningful labels to the clusters. This procedure categorizes and interprets the clusters 

based on their shared characteristics. the labeling process is explained in Figure 7 

6. Examination of the resulting clusters: The generated clusters are assessed from both a quality 

and a business standpoint. The clusters are evaluated in terms of quality using criteria such as 

minimal overlapping and a balanced combination of compactness and cohesion (we use). This 

assessment verifies that the clusters correctly reflect separate groupings of data points. 

Additionally, from a business perspective, domain experts validate the clusters to guarantee their 

accuracy and utility. Based on their expertise, expert examination helps validate or correct the 

clusters. For cluster quality assessment, we use SC and Dunn indices; SC primarily focuses on 

assessing the cohesion and separation of individual data points within clusters, while the DI 

takes into account both the compactness and separation of clusters as a whole. from the business 

point of view the clusters are assessed according to international references in terms of optimal 

humidity levels for cotton (see Table 1);  

7. Repeat, steps 3 to 6, until no correction is needed;  

 

Figure 11: The Machine Learning Model 

Analyzing Historical Data  

We visualized the historical data through charts and plots (see Figure 12and Figure 13) in order to get a 

better understanding of patterns and trends; also, we used the correlation matrix (Figure 14) to 

understand the relationships between variables. We then normalized data to ensure that variables are on 

a comparable scale, which will, enable fair comparisons and avoid biases based on their original 

magnitudes. 
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The Input Data Set 

There is a lack of large datasets in the field of intelligent irrigation, making it difficult to find one for 

this specific case. The dataset used for this study is related to a cotton crop irrigation model and consists 

of 200 records with three numerical attributes 

(https://www.kaggle.com/datasets/harshilpatel355/autoirrigationdata). While smaller datasets may 

result in biased results compared to larger ones, they also allow better visualization of the data and 

results, enabling further refinement of the model until an appropriate classifier is found. The first 

attribute represents soil moisture, the second indicates soil temperature, and the third is a boolean 

variable indicating whether or not water has been pumped. Figure 12 shows the distribution of each 

attribute:  

• The soil moisture attribute: expressed in numerical value, its unit is the centibar, indicating the 

soil moisture. It is the key indicator for providing the right amount of water to the crop. 

• The soil temperature attribute: expressed in numerical values, its unit is Celsius, indicating the 

soil temperature. 

• The pump attribute: expressed in two numerical values 1 or 0, indicating the state of the 

irrigation pump, whether it is open or closed. 

 

Figure 12: The Input Data Distribution 

We have, then, plotted the data on a three-dimensional graph. The data is divided into two groups: 

data where irrigation is active and data where irrigation is suspended. The color varies according to the 

degree of temperature. (see Figure 13) 

 

Figure 13: Input Data 3D-Plotting 

https://www.kaggle.com/datasets/harshilpatel355/autoirrigationdata
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Figure 14: The Correlation Matrix of the Input Data 

We then plotted the confusion matrix of the data (see Figure 14), the correlation between humidity 

and the pump value exceeds 60%, while the correlation between moisture and the temperature attribute 

is very low, which means that humidity strongly influences the irrigation decision and vice versa. 

We have then normalized the data following a standardized scaling, using the following equation: 

Equation 2: normalization equation 

Normalized_df =
df − df.min()

df.max() − df.min()
 

We will then apply our classifier to cluster the data. 

 

Figure 15: Data Plotting After Normalization. Vue 1 

 

Figure 16 : Data Plotting After Normalization. Vue 2 
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The Input Parameters of the Simulation  

We used the Evo Cluster (Aljarah, Q.R.F.H. (2021)) framework, an open-source framework 

implemented in Python language, which includes the most known and recent metaheuristic optimizers 

inspired by nature such as PSO, and we launched the experiment with the following input parameters:  

• Environment: Google Colab 

• Fram work: Evo cluster;  

• Input data: Cotton irrigation dataset;  

• DIW-PSO Optimizer parameters;  

• Vmax =6 

• Wmax=0.9 

• Wmin =0.2 

•     c1=2 

•     c2=2 

• Numbers of clusters: Automatically defined using the elbow method;  

• Main objective function to optimize: SSE (mean squared error) 

• Secondary functions to optimize: The silhouette Coefficient (SC), the Dunn Index (DI) 

• Number of executions: 30 

• Size of the particle population: 30 particle 

• the number of iterations: iters=25 

Results 

The number of clusters obtained using the elbow method is five; we have selected the five best results, 

represented in the table 2: 

Table 2: Best Five Execution Results 

Execution Time SSE SC DI STDev 

2.19 118.0 0.33 0.98 0.45 

2.23 118.19 0.33 0.99 0.45 

2.25 118.82 0.36 0.98 0.45 

2.23 118.1 0.34 0.96 0.45 

2.21 118.27 0.33 0.98 0.45 

In order to have high quality clusters, it is not enough to have the minimum value of the mean squared 

error only, but to take into account other metrics including the Silhouette score index and the Dun Index. 

The silhouette score ranges from +1 to -1, +1 indicates the best score and -1 indicates the opposite. 0 

indicates that the cluster overlaps with another cluster while negative values indicate that the point is 

assigned to the wrong cluster. In the conducted experiment, we haven’t obtain negative or null values, 

which means that no points were assigned to the wrong cluster, and the clusters are disjoint. 

On the other hand, a value close to 1 of the Dunn index indicates that the clusters are compact and 

well separated or distinguished from other clusters. The values obtained in our case are greater than or 

equal to 0.96, a value that is close to 1 and that the criteria of compactness and separation have been 

well verified. After a multi-criteria analysis, which minimizes SSE, maximizes SC, and minimizes DI, 

the best combination fulfilling this condition is presented in table 3: 

Table 3: The Best Result 

SSE SC DI STDev 

118.0 0.33 0.98 0.45 
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Plotting and Cluster Analysis 

We represented the results of the obtained clusters in 3D,  

 

Figure 17: Resulting Clusters, Vue 1 

 

Figure 18: Resulting Clusters, Vue 2 

 

We examined the clusters, to get an idea of their cardinality; the cardinality of each cluster is 

represented in the following figure: 

 

Figure 19: Clusters Cardinality 
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Labeling of Clusters 

It is clear that cluster 4 is the smallest of the five clusters obtained, according to the labeling process; we 

qualify it as the anomalous cluster. In other words, all data that will be close to the center of this cluster 

will be qualified as anomalous. 

Table 4: Cluster 4 

Moisture Temp Pump 

642 45 1 

507 45 1 

537 44 1 

533 42 1 

503 44 1 

579 45 1 

89 42 0 

76 35 0 

421 39 0 

208 39 0 

124 40 0 

245 43 0 

466 41 0 

75 37 0 

209 43 0 

304 43 0 

256 40 0 

141 43 0 

4 42 0 

178 39 0 

39 38 0 

21 37 0 

206 37 0 

143 43 0 

52 44 0 

Analysis and Discussion 

At the level of clusters 1, 2, and 5, the data obtained does not indicate any apparent anomaly, indeed, the 

humidity level is high which indicates that the soil has been well irrigated, which is still consistent with 

state of the irrigation pump put at the state ‘’ON’’. On the other hand, at the level of cluster 3, the data 

indicates low humidity levels, which is normal given that the pump is in the "OFF" state. The data on 

clusters 1, 2, 3, and 5 represent a certain coherence with the requirements of the plant and represent correct 

irrigation decisions that put the plant in its optimal growth conditions. 

In other words, any instance, after scaling, that will be close under the Euclidean metric to the centroids 

of the mentioned four clusters will contribute to the growth of the cotton crop. 

At the scale of cluster 4 (see Table 4), we see that in the face of very low soil humidity levels and high 

temperature, the pump is “OFF”, also, the data shows disturbance in the water flow and sudden changes, 

and an acute drop in humidity levels which may indicate faulty behavior of the humidity sensors. Cases 

of this cluster show that the choices made by the system do not support the plant's optimal growth zone; 

in other words, any new instance, scaled, that will be close under the Euclidean distance to the centroid 

of cluster 4 will be considered anomalous, because this decision will only contribute either to the hydric 

stress of the harvest or to water waste. 
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7 Conclusion 

In conclusion, this paper, which is an extension of our previous work (EL BEKRI, M. (2022)), 

demonstrates that particle system-based stochastics can be extended to new use cases and can be used to 

solve complex problems such as optimization of anomaly-based intrusion detection systems.  

It is important to recall, that signature-based intrusion detection systems have the largest market share, 

and the use of anomaly-based intrusion detection systems is still being debated within the academic 

community and they have not yet reached a level of maturity sufficient for a widespread adoption in the 

field of cyber security. We wanted to advance this topic and present concrete steps on how to implement 

anomaly-based IDS. In addition, the anomaly detection problem was most of the times addressed using 

simple statistical measures to calculate deviations from the center or mean value, however, anomalies 

remain unknown mysteries that require sophisticated approaches to be detected.  

In fact, the particle swarm optimization algorithm coupled with machine learning has shown its 

effectiveness in various optimization problems and we wanted to take advantage of this combination to 

optimize anomaly detection. We have chosen intelligent irrigation as a use case to test our proposal; We 

believe that DIW-PSO in particular and similar particle system-inspired stochastic optimization 

algorithms have a future in the world of intrusion detection systems. We also believe that building such 

classifiers addresses the issue of the rarity and the cost of labeled data. Through this mechanism, a self-

labeling process of data is set up, favoring the identification of the normal behavior of any intelligent 

irrigation system. 
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