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Abstract 

The mushrooming of IoTs (Internet of Things) and decentralised paradigm in cyber security have 

attracted a lot of interest from the government, academic, and business sectors in recent years. The 

use of MLT-assisted techniques in the IoT security arena has attracted a lot of attention in recent 

years. Many current studies presume that massive training data is readily accessible from IoT 

devices and transferable to main servers. However, since data is hosted on single servers, security 

and privacy concerns regarding this data also increase. It is suggested to use decentralised on-device 

data in OFDL (Optimal Federated Deep Learning) based anomaly detections to proactively identify 

infiltration in networks for IoTs. The GRUs (Gated Recurrent Units) used in OFDL's training rounds 

share only learned weights with the main OFDL servers, protecting data integrity on local devices. 

The model's training costs are reduced by the use of appropriate parameters, which also secures the 

edge or IoT device. In order to optimise the hyper-parameter environments for the limited OFDL 

environment, this paper suggests an MSSO (Modified Salp Swarm Optimisation) approach. 

Additionally, ensembles combine updates from multiple techniques to enhance accuracies. The 

experimental findings show that this strategy secures user data privacy better than 

traditional/centralized MLTs and offers the best accuracy rate for attack detection. 

Keywords: Internet of Things, Optimal Federated Deep Learning, Gated Recurrent Units, Security 

Attacks, Modified Salp Swarm Optimisation. 

1 Introduction 

In the current stage of societal development, IoTs are becoming more prevalent. IoT integrations are 

now being used by people from all walks of life in an effort to further industrial modernization, 

intelligence, and digitalization. IoT devices are becoming increasingly important and will significantly 
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affect people's life on an economic and social level. However, security has supplanted that as the top 

priority. The amount of malware samples for IoT devices significantly increased in 2018, going from 

3219 to 121588 samples, according to Kaspersky (Amanullah, M.A., 2020). In 2018, McAfee also 

disclosed several attacks and data breaches. IoT devices were the subject of several assaults by hackers 

due to their high number of vulnerabilities. Additionally, IoT nodes often have less resources, which 

makes them an attractive target for hackers. In addition, rapidly expanding IoT networks with diverse 

devices and dynamic behaviour have increased security issues to a new level (Yoon, J., 2020). 

IoTs, which include many connected devices, including cameras, embedded machines, sensors, and 

many other gadgets, is still increasing quickly. By 2025, there will be 41.6 billion Internet of Things 

(IoT) devices that are linked, producing 79.4 zettabytes (ZB) of data. (Diro, A.A., 2018). A variety of 

sophisticated security solutions have been developed to address IoT security, the majority of which use 

traditional cryptographic concepts (Jauro, F., 2020). Cryptographic solutions on individual IoTs are 

provided due to the dynamic nature of attacks and networks that employ IoTs. The whole spectrum of 

IoT security needs cannot be met by devices (Homayoun, S., 2019). The extent to which IoT devices 

generate large amounts of real-time data is currently being seen by the research community in IoTs. 

Additionally, they provided a number of MLTs and DLTs for IoT security (Asharf, J., 2020).  

Furthermore, security approaches based on DLTs are heterogeneity-tolerant since they acquire varied 

properties from unstructured data automatically. Patches for IoT devices are required on a regular basis 

since they may be used to detect newly evolved attacks from their previous versions (Brun, O., 2018). 

However, existing DLT-based security methods only took into consideration a small number of risks and 

out-of-date datasets. The goal of this study was to close a knowledge gap and effectively identify hostile 

devices that were the targets of nine different assaults. To do this, a special security framework and an 

approach for detecting IoT attacks based on a DLTs model were developed. The following are the 

important contributions of this work, as shown in Fig. 1: 

• An innovative, OFDL-structured framework for IoT attack detection is provided. 

• Outperforming centralised MLTs in terms of attack detection accuracy rates and reducing false 

alarms. 

• A comparison of the model with other recent research studies that are comparable. 

 

Figure 1: SmartArt of Proposed Methodology 

The remainder of the essay is structured as follows: The threats taken into account by the suggested 

security mechanism are listed in Section 2. The suggested security architecture and attack detection 

technique based on DLTs are then presented in Section 3. Section 5 after that experimentally assesses 

the suggested approach and offers security analysis taking into account previous recent comparable 

work. The conclusion is included in Section 6, which is followed by references and further work. 

2 Related Work 

A framework for IoT cyber-attack detection was presented by Golchha et al. (Golchha, R., 2023) utilising 

the Voting-based Ensemble Learning method. The suggested system employs a hard-voting classifier 

and an ensemble of the most recent and traditional MLTs algorithms, such as Histogram Gradient Boosts, 

Cat Boosts, and RF, for effective detections of cyber-attacks. The proposed model based on Cat Boost 
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had an accuracy of 99.85% and outperformed other two HGB and RF which had accuracies of 97.90% 

and 98.83%, respectively.  In terms of security and privacy, IoT management currently faces 

considerable hurdles. Unfortunately, the most significant challenge with IoTs is the privacy and security 

problems caused by energy constraints and the volume of IoT Devices. As a result, improving security 

and privacy in IoTs remains a critical topic in computer security.  

Through the Internet of Things, Vijayalakshmi and Kartika (Vijayalakshmi, P., 2023) developed an 

integrated DLTs (Deep Learning Techniques) system to detect files containing malware and counterfeit 

software. DCCNN-SMO is a hybrid DCCNN (Dual-Channel Convolution Neural Network) that 

combines SMO (Spider Monkey Optimisation) and is promoted for use in detecting software piracy by 

using reference code that has been stolen. The dataset was obtained using GCJ (Google Code Jam) in 

order to study software piracy. 100 input data for internet users were gathered from GCJ in order to 

investigate the proposed technique. The DCCNN-SMO is further used to visualise coloured pictures in 

order to spot dangerous intrusions in networks employing IoTs (Komisarek, M., 2021). Malware samples 

were obtained and evaluated from the Leopard Mobile database. The findings reveal that the proposed 

method for assessing cyber security threats in IoTs outperforms the other approaches in categorisation. 

The suggested DCCNN-SMO + SVM strategy yielded better results (98.55%), while other existing 

approaches such as GIST + SVM yielded 86.1%, CLGM + SVM yielded 92.06%, DNN + SVM yielded 

97.46%, and LBP + SVM yielded 78.05%. 

For the purpose of identifying IoTs network threats, Saheed et al. (Saheed, Y.K., 2022) suggested 

ML-IDS (machine learning-based intrusion detection system). This study's main goal is to implement 

IDS for IoTs using ML-supervised algorithms. To avoid information from leaking onto the test data, 

feature scaling was performed in the first phase of this study approach on the UNSW-NB15 dataset using 

min-max normalisation. This dataset includes a range of current attacks as well as usual network traffic 

habits that have been categorised into nine distinct attack types. The next step was to decrease 

dimensionality using PCA (Principal Component Analysis). Finally, the experiment employed six 

proposed machine learning models. The validation dataset, accuracy, the area under the curve, recall, 

F1, precision, kappa, and MCC (Mathew correlation coefficient) were used to evaluate the experimental 

outcomes. The accuracy and MCC of the findings, which were 99.9% and 99.97% respectively, were 

competitive when compared to earlier attempts. 

Raghavendra et al. (Raghavendra, T., 2022) recommended IDS for IoTs based on MLTs to protect 

networks from attacks and attackers.  The recommended machine learning-based detection approach 

uses fuzzy KNN (k-nearest neighbour) classifiers and recursive feature selection in this study to identify 

and classify features. This model has the highest specificity and the fewest false positives for identifying 

the aforementioned assaults. In order to assess the effectiveness of this suggested work using genetic 

recursive feature selections with fuzzy KNN classification algorithms to previous works on intrusion 

detection, other performance metrics including accuracies and values of recall, and F1-scores were also 

investigated. Models, on the other hand, are more prone to assaults due to their nature. 

Samy et al. (Samy, A., 2020) developed a thorough distributed, strong attack detections of DLT-based 

cyberattacks. Attack detector installations on fog nodes were made possible by their recommended 

architecture, high computing capacities, and nearness to edge devices. Using five distinct datasets, each 

with a different attack, six DLTs models were compared and tested. Their LSTM (long short-term 

memory) model beat other five DLTs models where in experiments, the suggested framework obtained 

99.97% accuracies for binary classifications, and 99.65% accuracies for classifying multi-class assaults. 

It reacts quickly and detects things accurately. But because this technique required heavy computations, 

powers, and storages, it could not be used on IoT devices which have limited resources. 
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Ullah et al. (Ullah, S.S., 2020) developed a content authenticity and integrity focused identity-based 

signature solutions for IoTs-based NDN networks. The suggested approach is based on hyperelliptic 

curves, which offer the same level of security as RSA (Rivest-Shamir-Adleman), bilinear pairs, and ECC 

(Elliptic Curve Cryptosystems) but generated small keys. The planned concept is the subject of formal 

and informal security evaluations to determine its feasibility. In order to confirm the suggested scheme's 

superiority in terms of security and efficacy, its performance is ultimately assessed through comparison 

with the pertinent current schemes. However, none of the suggestions can be implemented because to 

the high processing and transmission costs. 

Yeh et al. (Yeh, L.Y., 2020) developed an ECC processor with low energy consumption for IoTs. The 

proposed processor enabled parallel-field computations and used several approaches to preserve power 

and energy at the algorithmic, architectural, and arithmetic circuit levels. To reduce space and energy 

while avoiding SPA attacks, the proposed ECPM (elliptic curve point multiplication) technology utilises 

SBR (signed binary representation) in conjunction with the m-ary approach. The described hybrid 

modular arithmetic architecture also successfully enhances hardware utilisation to save both space and 

energy expenses. Finally, the proposed processor employs an energy-efficient data flow to decrease 

memory overhead for group operations even more.  

In the CPMA (conditional packets manipulation attack) paradigm, which Liu et al. (Liu, L., 2021) 

presented, attackers intentionally change packets whose attribute values fulfil particular requirements 

with a probability. The majority of currently used detection methods are ineffective at finding such 

malicious behaviour while defending against the CPMA assault. They identify malicious nodes by data 

collection and behaviour analysis, which is inefficient for IoT network nodes with limited energy. We 

suggest CPMAED, a framework for malicious node detection against CPMA attacks, to address these 

issues. In order to improve detection precision, we optimise broadcast packet routing and inject packets 

to gather more node information. The findings of the experiment demonstrate that the recommended 

method, which makes use of support vector machines and K-means, can successfully detect malicious 

node attacks and correctly classify their kinds. The suggested remedy did not work effectively, 

nevertheless, due to the increased strain on the router. 

Skowron et al.'s (Skowron, M., 2020) investigation on privacy threats on IoT devices concentrated 

mostly on data leaks revealed by traffic fingerprinting attacks. A passive traffic observer might employ 

the described assaults, which profit from the properties of statistical network flows and the usage of 

MLTs techniques. The feasibility of identifying certain devices within a victim's home network from this 

aspect is addressed in the first phase of the investigation covered in this article. It includes a performance 

comparison of the various MLTs employed and takes into consideration smart environment installations 

of different sizes and conditions. In the second section, a technique for detecting the condition of devices 

based on pattern recognition using ML is introduced and validated. Additionally, included are 

suggestions for reducing the privacy threats that have been considered. 

Inference: Current security measures may be deployed close to the edge layer, analysing network 

data and quickly detecting assaults utilising dispersed devices of IoTs.  Additionally, the aforementioned 

schemes were created specifically for Internet of Things (IoT) architecture. A more efficient DLTs 

scheme that can offer strong security with fewer computing and communication resources is needed to 

be capable of IoTs based security schemes and to prevent content poisoning attacks. 



Anomaly Detection for Internet of Things Security Attacks 

Based on Recent Optimal Federated Deep Learning Model 
Dr.R. Udayakumar et al. 

 

108 

3 Proposed Methodology 

Despite the fact that MLT solutions for safeguarding IoTs have sparked a lot of attention, data generated 

at the edges by IoT devices is constantly sent to main servers. Classic MLTs are not viable alternatives 

for user privacy domains because they rely on data being retained on single servers. To proactively 

identify infiltrations in IoTs, it was proposed to use decentralised on-device data in OFDL-based 

anomaly detections. As shown in Fig. 2, our technique employs extended federated training cycles on 

GRUs models and solely stores data on local IoT devices. communicating the acquired weights with the 

main OFDL server. 

 

Figure 2: Attack Detection Using Proposed OFDL Model 

Input Database 

To assess the method, we used a dataset of Modbus-based networks (Frazão, I., 2019). It is efficient to 

connect with physical devices that don't have internal communication mechanisms by using the decades-

old Modbus protocol. In many traditional industrial applications, requests-responses communications 

between devices are established using the well-known Modbus protocol. Industrial automation solutions 

use a mix of IoT hardware and the Modbus protocol to get over the interoperability problem. The 

message format for the Modbus RTU and Modbus TCP/IP protocols is shown in Figure 6. We took the 

network traffic data that CICFlowmeter9 (Draper-Gil, G., 2016) had gathered and turned it into a 

readable CSV formas.  

 

Figure 3: Format of Input Modbus 

The Modbus protocol is widely utilised in IoT research projects, notably in IoT. According to the 

authors of, Industrial equipments monitoring using internet and control systems can communicate with 

one another using MQTT (message queuing telemetry transmission) of IoTs. Modifying the Modbus 

protocol for different IoT sensor devices is possible according to (Jaloudi, S., 2019). The link between 

the application layer and the back-end server is known as an IoTs gateway. However, Modbus protocols 

are vulnerable to many attacks (Drias, Z., 2015), and the dataset we chose has the following 

vulnerabilities, which are listed below:  

• Man-in-the-middle Attacks: As the word indicates, a third party impersonates either the sender or 

the receiver during a communication between two parties and attempts to steal information or 
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conduct out operations in the sender or receiver's place. As a result, the attacker has access to the 

traffic and may create bogus transactions. 

• Ping DDoS Flood assaults (Internet control message protocol, or ICMP): This is the most 

common sort of DDoS attack, in which the attacker constantly pings the target server until it 

becomes unusable and denies all incoming connections. 

• Modbus Query Flood assaults: A type of DDoS attacks where attackers send flood end devices 

with messages in attempt to overwhelm them and prevent transmissions of legitimate message 

packets.  

• SYN DDoS Attacks: In an effort to keep all ports occupied and stop the server from opening up 

new ports for connections, a syn assault floods a server with syn packets to start the connection 

handshake. A bot that sends several connection requests while concealing the target device's real 

Internet protocol (IP) address and utilising spoof IPs typically conducts a SYN DDoS assault. The 

well-known IoT Mirai attack is referred to as SYN DDoS. 

Attack Prevention and Detection Using OFDL-GRU Ensemble Model 

The proposed architecture based on DLTs is discussed below:  

Attack Prevention Using Structure of LSTMs and GRUs 

It is suggested that GRUs, a kind of RNN (Recurrent Neural Networks), and LSTMs Networks be used 

to solve vanishing gradients problem. LSTMs and GRUs include gates to govern learning processes and 

monitor information flows, enabling networks to learn from long-term dependencies (Thooyamani K.P., 

et.al, 2014). Gates serve as network switches and aid in storing both long-term and short-term 

information.  

 

Figure 4: Illustration of LSTM and GRUs (Malhotra, P., 2015) 

SFs (Sigmoid functions): SFs provide a way for assessing whether data should be preserved or 

destroyed. SF creates values in the interval [0,1], with a value near to 0 suggesting that the network can 

forget information and a value close to 1 indicating that information must be maintained for future 

updates.  

tanh (Tangent hyperbolic): Tangent hyperbolic (tanh) are activation functions yielding values 

between 1 and 1. As a consequence, positive values are assigned a value between 0 and 1. while negative 

values are mapped strongly negatively. The tanh function for hidden layers in a neural network is 

recommended because its mean value makes learning for subsequent layers considerably simpler.  

CSs (Cell States): CSs are representations of data stored within LSTMs memory blocks. 𝐶𝑆𝑡 

represents current cell state or memory cell and 𝐶𝑆𝑡−1 represent previous cell state.  
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LSTMs' gates: LSTM’s memory blocks have linked memory cells which receive and store 

information for long-term referencing and are based on human propensity to memorise rhyming patterns. 

Gates are used by memory cells to regulate the storing, retrieving, and deleting of information. Input, 

forget, and output gates make up LSTMs. Below is a description of gates in more depth.  

FG -- Forget Gates: According to Equation 1, the input that does not help the LSTM network learn 

is deleted for the specific cell. 

𝐹𝐺𝑡 = 𝜎(𝑊𝑀𝐹𝐺  [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖𝑎𝑠𝐹𝐺  ),  (1) 

where 𝐹𝐺𝑡 stands for current values of forget gates which result from sigmoid functions, 𝑥𝑡 represents 

current inputs for memory cells, 𝑊𝑀𝐹𝐺 implies weight matrices from forget gates to inputs, 𝑏𝑖𝑎𝑠𝐹𝐺 

stands for biases of forget gatea, and ℎ𝑡−1 represents information from previous hidden cells.  

Input Gates (IG): identify data’s importance and maintain cell states for future uses. Equations 2 to 

4 explain on computing input gates when values of current cell states are determined by sums of forget 

gates. 𝐹𝐺𝑡 and previous cell states 𝐶𝑆𝑡−1products and input gates and current state candidate values 𝐶�̂�𝑡, 

respectively. 

𝐼𝐺𝑡 = 𝑆𝐹(𝑊𝑀𝐼𝐺[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖𝑎𝑠𝐼𝐺)  (2) 

𝐶�̂�𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑀𝐶𝑆[ℎ𝑡−1, 𝑥𝑡] +  𝑏𝑖𝑎𝑠𝐶𝑆)  (3) 

𝐶𝑆𝑡 = 𝐹𝐺𝑡 ∗ 𝐶𝑆𝑡−1 + 𝐼𝐺𝑡 ∗ 𝐶𝑆𝑡,   (4) 

where 𝐼𝐺𝑡 stand for results from sigmoid layers (input gates), 𝐶�̂�𝑡 are cell activation functions 

generated by tanh layers, 𝐶𝑆𝑡−1 imply cell states of previous timestamp memory cells, 𝐶𝑆𝑡compute 

current cell values which represent importance of information to save for future reference.  

Output Gate (OG): Final outputs are decided by these gates. Equations 5 and 6, ℎ𝑡 can be computed 

by running 𝐶𝑆𝑡 (derived from Equation 4) through tanh activations.  

𝑂𝐺𝑡 = 𝜎(𝑊𝑀𝑂𝐺[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖𝑎𝑠𝑂𝐺)   (5)  

ℎ𝑡 = 𝑂𝐺𝑡 ∗ 𝑡𝑎𝑛ℎ(𝐶𝑆𝑡),     (6)  

where 𝑂𝐺𝑡 are positive output gate values < 1 set using sigmoid functions, and ℎ𝑡are final output 

values of current memory cells.  

GRU gates: When compared to LSTMs, GRU gates are substantially simpler to construct. Input to 

each memory cell is combined into a single value rather of two using only two gates namely Reset and 

Update gates. GRUs train faster and use less computing power. 

Reset Gates: Using Equation 7, knowledge is lost if it is not required for future learning or reference, 

similar to LSTMs' forget gate.  

𝑟𝑒𝑠𝑢𝑙𝑡𝑡 = 𝑆𝐹(𝑊𝑀𝑟𝑒𝑠𝑢𝑙𝑡[ℎ𝑡−1, 𝑥𝑡]),  (7) 

where 𝑟𝑒𝑠𝑢𝑙𝑡𝑡 represents sigmoid layer’s results for current timestamps/memory cells of reset gates, 

ℎ𝑡−1 stands for previous memory cell’s information, and 𝑥𝑡 represents current memory cell inputs.  

Update Gates: GRUs employ a single gate termed an update gate to assess if the data from the current 

state needs to be stored for later use rather than an output and input gate.  

𝑆𝑡 = 𝑆𝐹(𝑊𝑆[ℎ𝑡−1, 𝑥𝑡])        (8)  

ℎ̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑀[𝑟𝑒𝑠𝑢𝑙𝑡𝑡 ∗ ℎ𝑡−1, 𝑥𝑡])   (9) 

ℎ𝑡 = (1 − 𝑆𝑡 ∗ ℎ𝑡−1 + 𝑆𝑡 ∗ ℎ̃𝑡),  (10)  

where 𝑆𝑡is sigmoid layer’s results, ℎ̃𝑡 represents Vectors created by tanh layers, and ℎ𝑡−1 implies 

previous cell state values. The input size for each LSTM/GRU in this study varies based on the window 

size, which employs seven different window sizes. The size of the window is essential since the amount 

of data varies with the size of the window, improving the performance of the MLTs. The size of the 

window grows as the amount of data saved in each neural network memory cell does. There is no 
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fundamental principle that demonstrates the connection between model performance and window size. 

like there is for the MLT hyperparameter. Certain research papers (Sak, H., 2014) suggest that the kind 

and quantity of the dataset influence the impacts of Window size and GRU/LSTM Layers.  

OFDL Architecture: This section describes an OFDL-based solution for the identification of 

anomalies using AI on networks including IoT devices. The approach's high-level architecture is shown 

in Figure 2, and It comprises of DLT local models, training data copies for virtual instances, and virtual 

IoT instances that represent IoT devices in networks. There are also global DLTs for window widths, 

OFDL averaging components at central servers, and Ensembles composed of RF (random forest) 

decision tree Ensembles. In the following paragraphs, we go through each step that was done to put the 

recommended approach's techniques into action. In the real world, there will be no need to pre-process 

data collected at a central server or generate virtual instances because genuine data for training is 

available at end-devices.  

Virtual Instances: At this stage, recreate the IoTs network configuration by using PySyft to create 

virtual instances (Ryffel, T., 2018). To facilitate exchange of learned MLTs parameters between IoTs 

mobile end devices and the central FL server, we establish virtual instances (denoted as "ofdl_n" for the 

selected n number of end devices) and a specific instance named "ofdl_average" to imitate the central 

server. Each of the n chunks of the dataset is spread to fln virtual instances.  

Pre-process of captured data: Each device or gateway of IoTs perform data preprocessing pySyft: 

a DLT that stores users’ data on end devices to enable decentralised training. The CICFlowmeter 

programmes are used by connecting components between devices of IoTs and digital platforms or clouds 

to gather network data in pcap (packet capture) files and convert them to CSV files (Draper-Gil, G., 

2016). After additional analysis to remove any features not important to the learning process, the 

converted CSV file is used. The processed data is then split into n parts and distributed to the IoT end 

device virtual instances (ofdl_n). 

Attack Detection Using OFDL and Ensembler Method 

The input layer neuron counts are determined by amounts of inputs. In iterations of MSSA, the counts 

of windows are improved.  Along with the greatest model, the most accurate model will be developed.  

SSA (Salp Swarm Algorithm): Mirjalili developed SSA is a meta-heuristic scheduling technique 

that draws inspiration from the ocean's salp life cycle (Mirjalili, S., 2017).  The Salp Chain is a collection 

of transparent, jelly-like creatures called salp. According to one theory, swarming salps have a special 

behaviour that enables them to move and coordinate quickly in search of food (Mirjalili, S., 2017). Best 

answers of SSA approaches were assessed mathematically. These research' findings showed that SSA 

optimisations increase initial random and convergent solutions ideally (Mirjalili, S., 2017). The SSA 

approach is recognised to provide better features than other algorithms such as DE (Dolphin 

Echolocation) and PSO (Particle Swarm Optimisation). 

 

Figure 5: Visualization of Salp Swarm Algorithm 
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Salp chains with leaders and followers are shown in Fig. 5. Salp followers follow the leading salp 

(green), the salp leader in n-dimensional space, where n stands for variable counts of the problem and 

serve as representations of Salp's foraging areas. A two-dimensional matrix called m is used to hold all 

salp positions. X is intended to stand in for the availability of food for the herd aim in the livelihood 

space. The SSA algorithm's location for the Salp leaderSL may be modified. using equation (11).  

𝑆𝐿𝑗
𝑖={

𝑋𝑗 + 𝑟1(((𝑈𝑃𝑗 − 𝐿𝐵𝑗) ∗ 𝑟2 + 𝐿𝐵𝑗)

𝑋𝑗 − 𝑟1(((𝑈𝑃𝑗 − 𝐿𝐵𝑗) ∗ 𝑟2 + 𝐿𝐵𝑗)
}

𝑟3 ≥ 0
𝑟3 ≥ 0

   (11) 

Where 𝑋𝑖 stands for initial locations of Salp in 𝑖 dimensions, 𝑋𝑗 represents initial positions of food 

supplies in j dimensions, 𝑈𝑃𝑗 implies upper limits in j dimensions while 𝐿𝐵𝑗 represents lower limits in j 

dimensions. The variables 𝑟1, 𝑟2, and 𝑟3 are random number generators. The coefficient 𝐶𝑜𝑒𝑓𝑓1 is an 

essential parameter for balancing search and usage in the SSA algorithm, as described in equation (12) 

𝐶𝑜𝑒𝑓𝑓1 =  2𝑒
−(

4𝐼

max 𝐼
)
    (12) 

Where 𝐼 represents current process iterations while  max 𝐼 stands for maximum iteration counts. In 

the range [0,1], the parameters r2 and r3s are generated evenly. J must go in either the positive or negative 

direction of infinity to locate the location of the next dimension. The position of the follower may be 

found using Newton's principles of motion. If I is higher than or equal to 2, then SLij is the position of 

the Salp follower in dimension j. This is determined by the equation (13) where t is the time, SV is the 

initial velocity, and an is the acceleration. 

 𝑎 =
𝑆𝑉𝑓𝑖𝑛𝑎𝑙

𝑆𝑉0
= 𝑤ℎ𝑒𝑟𝑒 𝑆𝑉 =

𝑥−𝑥0

𝑡
=  (13)  

The iteration difference with variable l is the same since the optimisation time is a process iteration, 

hence 𝑆𝑉0  =  0 is assumed. Equation (14) may be used to express the salp position equation.     

𝑆𝐹𝐿𝑗
𝑖 =

1

2
(𝑆𝐹𝐿𝑗

𝑖 + 𝑆𝐹𝐿𝑗
𝑖−1)     (14) 

Where I >= 2 and 𝑆𝐹𝐿𝑗
𝑖  is the salvage follower's location on dimension j. For CNN1D classification 

in this study, SSA optimisation calculates the ideal number of filters and neurons to achieve the 

maximum accuracy. Comparing accuracy results in iterations help in discovering the most effective 

hyperparameters. The stages below show how the CNN-based SSA optimisation process flows: 

Equation (11) will be used to determine the fitness value in order to update the position of the salp's 

leader when the optimal criterion requirements have not been fulfilled. Recalculate c1 using equation 

(13)   

1. Obtain feature information from the feature extraction process  

2. set a hyper parameter on neural networks. SL_i with i=(1,2,3, 4,...., n) and limit values of UB,LB 

are between 1-2048, the first step in the salp process 

3. Equation (11) will be used to calculate the fitness value to update positions of salp's leaders when 

optimal criterion requirements have not been reached. Recalculate c1 using equation (13)  

4. Reevaluate the salp's status among the populace: Update the salp leader position using equation 

(11), if the salp position is equal to 1, and update the salp leader position using equation (11), if the 

salp position is greater than 1. Updates to the salp population will be made in accordance with the 

upper and lower limits.  

5.  Updating the values of hyperparameters 

6. Salp optimisation has been updated in accordance with steps (3)(4). provides the threshold value 

and iteration weights for following iterations.  
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7. After entering weights and threshold values from step 6, repeat hyper parameter optimisations until 

iterations are complete.  

8. The model prediction will begin at the final salp point on the training data. 

9. Test the data and provide accuracy values. 

MSSA (modified SSA): As shown in Eq. (2), leading salps modify their positions in SSA dependent 

on food availability. The SSA method moves leader salp's positions by single points in generations, and 

more salps follow leaders. If the method is unable to recover because it is unaware of the food position 

(FP), it will fail. To put it another way, when an approach converges, it becomes inactive since it can no 

longer find new objects. With this strategy, the SSA algorithm becomes inaccessible at locally optimal 

locations. Given these insights, MSSA is suggested to address the aforementioned problem and enhance 

the flexibility and search capabilities of the algorithm. Considering just half of the information, the 

purported MSSA's effectiveness and investigative abilities are  

𝑥𝑖
𝑗

=  {
𝑥𝑖

𝑗
+ 𝑟1(𝐹𝑃𝑖 − 𝑥𝑖

𝑗
𝑟3) ≥ 0.5

𝑥𝑖
𝑗

− 𝑟1(𝐹𝑃𝑖 − 𝑥𝑖
𝑗
)𝑟3 < 0.5

     (15) 

According to Eq. (14), leaders modify their stance in reaction to the situation of the food supply and 

their previous position. This strategy stimulates exploration and allows the MSSA algorithm to conduct 

a more complete global search throughout the whole search space.  To boost the efficacy of the proposed 

MSSA's search, the followers will alter their locations in line with the following equation: 

𝑥𝑖
𝑗

= 𝑟2(𝑥𝑖
𝑗

+ 𝑥𝑖
𝑗−1

)         (16)  

The poorest salp with the greatest objective function value at each iteration step will be replaced in 

the proposed MSSA with a completely random salp. Fig. 6 depicts the flowchart for the suggested MSSA 

approach. 

 

Figure 6: Flowchart of MSSA 
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OFDL Training: FL Asynchronous training is carried out using the available IoTs instances. With 

their own copy of the dataset, each client node runs training rounds and communicates the weights of 

trained local MLTs with the of deaverage aggregating instance. Training rounds are referred to in FL as 

each distinct period that is run on each end device. Below is a quick explanation of the OFDL training 

logic and the stages guiding the method, which are listed in Algorithm 1 along with the formal steps of 

the suggested technique.  

• Determine the best window sizes. OWi as MSSA. 

• Create virtual instances to represent IoT end-devices li. 

• Define the GRU network's settings GRUML for OWi window sizes. 

• Share GRUML with virtual instances li. In instances li, training rounds on GRUML are performed, 

and trained local MLT updates are shared with ofdlaverage. Training rounds on multiprocessors are 

used to simulate real-world circumstances.  

• Each virtual instance ofdli runs training rounds on a separate CPU and shares learnt local model 

weights mwi to flaverage on a regular basis. 

• At this point, the virtual instance ofdlaverage operate as aggregate components on central servers, 

listening for incoming local model updates mwi.  

• Global MLTs M(owi) of window sizes are computed by adding weights of local MLTs.  

• Distribute a copy of the Global MLTs to each end-device.  

Ensembler: Ensemble Learning enables the efficient combination of MLT outputs to attain a greater 

accuracy rate. This is sometimes linked to the well-established notion that mixing numerous MLTs yields 

better/optimal outcomes than a single MLT. To ensemble seven global MLTs s 𝑀𝑤𝑖, Random Forest 

decision tree classifier (𝑟𝑓𝑑𝑡 ) was used. For given input network data, say X with n columns say X) 

𝑋 =  𝑋1, . . . , 𝑋𝑛, each Mwi forecasts the probability values ℎ1, ℎ2, . . . , ℎ𝑛  of each label Y. Ensembler 

combines the 𝑀𝑤𝑖probability values to generate an ensemble prediction function 𝑓(𝑥), which uses 

predictions to vote on the labels from each model. Equation 11 represents the computation of probability 

for the given input data.  

ℎ𝑖 = 𝑦𝑖(𝑂𝑀𝑤𝑖(𝑋))                                                                                      (17)  

𝑓(𝑥)  =  𝑎𝑟𝑔𝑚𝑎𝑥𝑦𝜖𝑌 ∑ 𝐼(𝑦 =  ℎ𝑗  (𝑥))       𝐽
𝑗=1               (18) 

In Equation 12, the prediction function 𝑓(𝑥) of 𝑟𝑓𝑐 gets input from prediction probability values of 

seven MLTs s 𝑂𝑀𝑤𝑖for each label 𝑦 =  𝑦𝐶𝑙𝑒𝑎𝑛, 𝑦𝑀 𝐼𝑇𝑀, 𝑦𝑝𝑖𝑛𝑔𝐷𝐷𝑜𝑠, 

𝑦𝑚𝑜𝑑𝑏𝑢𝑠𝑞𝑢𝑒𝑟𝑦𝑓 𝑙𝑜𝑜𝑑 , . . . , 𝑦𝑠𝑦𝑛𝐷𝐷𝑜𝑠 in the dataset (given in Section IV-A), reflect assault categories. RFC 

predicts labels with high degree of certainty by using likelihood as votes from MLTs. Fig. 7 shows how 

ensembler is integrated with the suggested method. decision tree classifier for RF. 

Algorithm 1: Anomaly Detection with OFDL 

Input: ML Local models of GRUs, parameters of MSSA 

Output: Network flows anomaly detections  

Set initial salp populations 𝑆𝐿𝑖  (𝑖 =  1, 2, . . . , 𝑛) 

When end conditions are not met consider UB and LB.  

Determine each search agent's salp fitness.  

Identify the salps that are not dominant. 

Update repositories by considering acquired non-dominated salps. 

If repositories are full  

Delete one repository resident and execute repository maintenance method. 

Repository: Add non-dominated salps  
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end  

Select a food source from the repository with =Select Food(repository)  

If (i==1), update r_1 by Eq. (3.2) for each salp (SL_i).  

Eq. (3.1) should be used to update the leading salp's location.  

else  

Adjust the follower salp's location using Eq. (3.4).  

End 

end Based on the upper and lower boundaries of the variables, modify the salps.  

end  

return repository F as optimal window sizes 𝑂W 

𝑂𝑊 =  𝑜𝑤1, 𝑜𝑤5, 𝑜𝑤10, 𝑜𝑤15, 𝑜𝑤20, 𝑜𝑤30, 𝑜𝑤40 /* window sizes */  

𝐹 𝐿 =  𝑜𝑓𝑑𝑙1, 𝑜𝑓𝑑𝑙2. . . 𝑜𝑓𝑑𝑙𝑛   /* Virtual Devices of IoTs */ 

𝑂𝑀𝑤𝑖 = 𝑂𝑀𝑤1, 𝑂𝑀𝑤5, 𝑂𝑀𝑤10, 𝑂𝑀𝑤15, 𝑂𝑀𝑤20, 𝑂𝑀𝑤30, 𝑂𝑀𝑤40 /* Global MLTs weights for each 

window size */  

FunctionOFDL Training(maxtrainingrounds): 

while𝑜𝑓𝑑𝑙𝑖 in F L do  

foreach𝑤𝑖 in W do 

𝑚𝑤𝑖  =  𝑡𝑟𝑎𝑖𝑛(𝑓𝑙𝑖 𝑖𝑛 𝑑𝑎𝑡𝑎(𝑤𝑖)) /* Train LSTM with local data */  

𝑟𝑒𝑡𝑢𝑟𝑛𝑚𝑤𝑖 

𝐸𝑛𝑑𝐹 𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

Function 𝑜𝑓𝑑𝑙𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑚𝑜𝑤𝑖
): 

foreach𝑤𝑖 in 𝑂𝑊 do 

𝑀𝑜𝑤𝑖
= 𝑜𝑓𝑑𝑙𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (𝑚𝑜𝑤𝑖

 )  

return Mwi 

𝐸𝑛𝑑𝐹 𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

Function𝐸𝑛𝑠𝑒𝑚𝑏𝑙𝑒𝑟(𝑀𝑜𝑤𝑖
): 

𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝑑𝑎𝑡𝑎 /* New flows in-network data */  

foreach𝑜𝑤𝑖  𝑖𝑛 𝑂𝑊𝑖do 

𝑙𝑠𝑡𝑚𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 =  𝑚𝑜𝑤𝑖
(𝑛𝑒𝑤𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝑑𝑎𝑡𝑎) 

𝑎𝑛𝑜𝑚𝑎𝑙𝑦𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑓𝑙𝑎𝑔 =  𝐸𝑛𝑠𝑒𝑚𝑏𝑙𝑒𝑟(𝑙𝑠𝑡𝑚𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠)  

𝐸𝑛𝑑𝐹 𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

𝑚𝑤𝑖 = 𝑜𝑓𝑑𝑙𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔(𝑚𝑎𝑥𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑟𝑜𝑢𝑛𝑑𝑠)  

𝑀𝑤𝑖 = 𝑓𝑙𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑚𝑜𝑤𝑖
 ) 

while𝑜𝑓𝑑𝑙𝑖𝑖𝑛 OFDL𝒅𝒐 

foreach 𝑜𝑤𝑖  in OW do 

𝑚𝑜𝑤𝑖
= 𝑀𝑜𝑤𝑖

 /* replace local ML */ 

𝐴𝑡𝑡𝑎𝑐𝑘𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 = 𝐸𝑛𝑠𝑒𝑚𝑏𝑙𝑒𝑟(𝑀𝑜𝑤𝑖
)  
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Figure 7: Ensemble Approach of Proposed Methodology 

4 Experimental Results and Discussions 

Compare the performance of the suggested strategy against others, including ML-IDS (Saheed, Y.K., 

2022), VELA (Golchha, R., 2023), DCCNN-SMO (Vijayalakshmi, P., 2023), and others based on 

datasets and assessment criterion provided in this section. The environment setup is put up on a server 

running Ubuntu 18.0.0 LTS that houses a lambda GPU (Graphics Processing Unit). We have utilised 

PySyft as the deep learning framework for OFDL features and GRUs as the ML neural network. GRUs 

configuration learns on a traditional environment setup with centralised training data whereas OFDL 

implements Algorithm 1. The suggested OFDL model's effectiveness for detecting assaults on IoT 

devices is evaluated using standard metrics of accuracies and values for precision, recall and F1-scores. 

Recalls: Recalls quantify positive class prediction counts from all positive examples in datasets and 

given by 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
     (19) 

Precisions: Precisions quantify positive class prediction counts that actually belong to positive 

classes and estimated as:  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
     (20) 

F-measure: F-Measures provide single scores that balance precision and recall in single value and 

estimated as: 

𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =
(2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
   (21) 
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Accuracy: It is one of the most often used metrics of classification performance, and it is defined as 

a ratio of successfully segmented samples to total number of samples, as shown below.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
     (22) 

Where True Positive (TP): This denotes the accurate detection of an incursion. True Negative (TN): 

This status shows that a benign activity was appropriately identified as non-malicious. FP: It means that 

a legitimate action was mistakenly identified as harmful. False Negative (FN): This signal means that 

an incursion was missed and classified as a benign activity. 

 

Figure 8: Precision Performance Comparison 

The accuracy comparison between the proposed OFDL and the current ML-IDS, VELA, and 

DCCNN-SMO is shown in Fig. 8. The suggested approach, when compared to current methods, may 

achieve a high accuracy rate, as shown in the picture. With a high accuracy rate of 94%, it is an efficient 

method of follicle detection. VELA and DCCNN-SMO are offering strong accuracy rates of 85%, 86%, 

and 90% respectively, which is lower than the OFDL when compared to other current approaches like 

ML-IDS. In comparison to the typical DRNN, the training curve for the suggested technique converges 

significantly more quickly and with less oscillation, and the final error is also substantially reduced. 

These data provide additional evidence that the suggested strategy has greater attack detection 

accuracies. 

 

Figure 9: F-measure Performance Comparison 

The F-measure comparison findings between the proposed OFDL and the present ML-IDS, VELA, 

and DCCNN-SMO are shown in Fig. 9. The results clearly reveal that the proposed OFDL obtains an F-

measure rate of 89%. The suggested work may provide superior follicle identification results than the 

existing approaches, according to the F-measure rate comparison of ML-IDS, VELA, and DCCNN-
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SMO, which are delivering lower rates of 76%, 79%, and 85%, respectively. The OFDL network 

typically trains quicker than ML-IDS, VELA, and DCCNN-SMO, and it also has a more efficient 

automated feature extraction mechanism, which increases the f-measure value.  

 

Figure 10: Recall Performance Comparison 

The recall comparison between the proposed OFDL and the current ML-IDS, VELA, and DCCNN-

SMO is shown in Fig. 10. The recall rate of the suggested approach is high at 95%. According to the 

findings, it is clear that the suggested OFDL obtained a high recall rate value, suggesting a high rate of 

intrusion detection. The training time will be shortened with a decent prediction model thanks to the 

suggested scheme's reduction in stored model size. The suggested work can provide superior security 

prevention and detection outcomes than the existing approaches, as evidenced by recall rates of 85%, 

91%, and 93% for the existing methods of ML-IDS, VELA, and DCCNN-SMO, respectively. The results 

section provides information on how well GRUs work for various ideal window and layer sizes. 

 

Figure 11: Accuracy Performance Comparison 

The graph in Fig.11 above illustrates the accuracy comparison for follicle prediction. The techniques, 

including ML-IDS, VELA, DCCNN-SMO, and OFDL Classifier, are put into practise. The accuracy 

value increases linearly as the number of photos increases. With a 99% accuracy rate, OFDL is a reliable 

method of receiving correct predictions. ML-IDS, VELA, and DCCNN-SMO provide less rates of 82%, 

95.39%, and 97.5%, respectively, when comparing the accuracy of the current approaches. The output 

therefore demonstrates that the suggested OFDL method outperforms the current algorithms in terms of 

improved liquid particle detecting outcomes with high accuracy rates. Because OFDL learning methods 

are extremely resistant to noise in the training data, they improve accuracy while avoiding local optima 

problem. These results further confirm that the proposed method can more effectively and more stably 

recognize not only the attacks but also their verities. 
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5 Conclusion and Future Work 

For the precise identification and categorization of assaults in networks employing IoTs, this paper 

provided an ideal federated learning-based anomaly detection method. When categorising assaults, 

higher accuracy rates are achieved with different layers of GRUs, and components of proposed 

techniques that implement OFDL shares computer resources with on-device training. The MSSA is used 

to optimise the window size and layers of FDL. The ensembler, which integrates predictions from many 

GRU layers, significantly improves the method's performance. The FL advantages of user data privacy 

in IoT-enabled networks offer a safe layer, boosting the dependability of IoT devices. The evaluation's 

findings show that the suggested method outperforms intrusion detection systems that do not support 

FL. The suggested method will be improved using an IoT testbed, and its effectiveness will be assessed 

using real-time data from datasets that are particular to each type of IoT device and can classify both 

known and unknown ones. The application of ensemble machine learning to enhance attack success, 

efficacy, and strength should, however, raise concerns across all fields of study and industry, since the 

absence of countermeasures against machine learning-based assaults leaves us all open to attack. Critical 

research is necessary to better detection and defences against these machine learning-based attacks, 

particularly in critical infrastructure systems where major disruption, damage, and fatalities are possible. 
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