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Abstract 

Ransomware is a rapidly growing malware threat that encrypts a user's files and demands a ransom 

for the decryption key. It has caused significant financial harm worldwide and is difficult to detect, 

especially when it's a new, unknown zero-day ransomware. Most commercial antivirus software 

relies on signature-based detection, which can be slow and inadequate for swiftly identifying 

suspicious programs. To tackle these challenges, this paper presents a ransomware protection 

method utilizing decoy files. Our deception-based protection method enhances ransomware 

detection with a fair decoy deployment strategy. Our method offers the advantage of robustly 

detecting ransomware compared to existing deception-based methods. Furthermore, it can 

effectively address ransomware that employs random access attacks, thereby bypassing deception-

based detection techniques. In the evaluation, we provide a comprehensive analysis of our 

experimental results to vividly demonstrate the efficacy of our proposed method. Specifically, we 

introduce a random-access attack scenario that could potentially circumvent deception-based 

protection mechanisms. Furthermore, we assess the resilience of our method against such random-

access attacks. 

Keywords: Deception-based Method, Malware Detection, Ransomware Detection. 

1 Introduction 

Ransomware attacks targeting Windows-based systems has been observed globally, with a 

corresponding rise in the victim count. A report from Secure List (Securelist, 2021) indicated that in 

2020, around 1,091,454 unique users experienced ransomware threats on their devices. Another report 

by Trend Micro (Trend Micro, 2021) highlighted that in May 2017 alone, WannaCry infected over 

200,000 individuals across 150 nations. While ransomware shares several characteristics with typical 

malware, it possesses a distinct trait. Ransomware performs the file operations swiftly to encrypt users’ 

system files. Moreover, once a system is compromised and files get encrypted, decrypting them without 

the necessary keys becomes a very difficult task (Ferreira, A.P., 2021). Even with comprehensive 

manual techniques like reverse engineering to unveil the ransomware's actions, the decryption keys 

might remain elusive, especially if they are to be transmitted from a remote server. Hence, when a system 

gets infiltrated by ransomware, the prospects of restoring it without the perpetrator’s intervention 

diminish considerably. 

Historically, antivirus solutions have relied on signature-based detection techniques to identify 

malware (Al-Asli, M., 2019). These methods use static patterns, sourced from recognized malicious 

binaries, to check if unfamiliar binaries are malicious. The patterns, in signature-based detections, 
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encompass strings and features of disassembled codes. While these methods are good at finding malware 

variations, they struggle with new, unknown threats because the patterns for such malware haven't been 

found yet. Signature-based methods may not detect malware types that change quickly and produce 

many versions (Nieuwenhuizen, D., 2017). Even though some methods use patterns from complex 

dynamic analysis results, most antivirus software in a user system cannot perform dynamic analysis 

because it takes a lot of computing power (Bayer, U., 2006). To overcome the limitation, many 

ransomware detection approaches have been proposed. The existing approaches can be divided into two 

methods: deception-based method and behavior-based method. Deception-based methods use fake files 

to detect when these files are accessed, while behavior-based ones watch file activities to see if anything 

unusual is happening. We are primarily dedicated to the development of a novel deception-based 

ransomware detection method that offers deterministic ransomware detection among various available 

approaches. Unlike previous deception-based methods, which struggle with random-access attacks 

caused by decoy files closely located in the root directory, our proposed method can effectively detect 

ransomware that employs random access attacks with only a few decoy files distributed across the user 

subfile systems. In order to efficiently combat ransomware that employs random access attacks, our 

methods employ the spectral clustering algorithm to evenly distribute decoy files.   

2 Related Works 

Many previous research has delved into understanding the operations of ransomware within a victim's 

system. Daniel et al. (Gonzalez, D., 2017) explored the behaviors of prevalent ransomwares and assessed 

various preventive measures. Gazet (Gazet, A., 2010) Conducted research on early-emerging 

ransomware samples to decipher their behaviors. They employed reverse engineering to scrutinize 

fifteen samples, focusing on malware features and cryptographic elements. Pathak et al. (Pathak, P.B., 

2016) examined several ransomware samples, detailing the distinct behaviors of each. They also put 

forward preventive measures, like regular file backups and timely updates of security tools. Cabaj et al. 

(Cabaj, K., 2015) executed an in-depth study on CryptoWall, revealing that it communicates via the 

HTTP protocol and employs concealment tactics, including Tor and misleading DNS. 

To shed light on ransomware characteristics, numerous studies proposing protection strategies have 

been introduced. Jung et al. (Jung, S., 2018), along with Lee et al. (Lee, K., 2019), put forward models 

to assess the entropy in file binary content, ascertaining if a file system's files are encrypted. Scaife et 

al. (Scaife, N., 2016) introduced a behavior-oriented strategy for defense against ransomware, utilizing 

specific indicators to identify any resemblance to ransomware activities. Kharaz et al. (Kharaz, A., 2016) 

unveiled a system, UNVEIL, that dynamically detects ransomware by monitoring I/O actions and 

evaluating data entropy. Moreover, it uses screenshots to match against known ransomware visuals. 

Continella et al. (Continella, A., 2016) crafted ShieldFS, aiming to safeguard Windows systems. Al-

Rimy et al. (Al-Rimy, B.A.S., 2020) unveiled a technique for spotting ransomware's encrypting patterns. 

Methods presented in (Jung, S., 2018) (Lee, K., 2019) (Scaife, N., 2016) (Kharaz, A., 2016) (Continella, 

A., 2016) (Al-Rimy, B.A.S., 2020) recognize ransomware intrusions based on extensive system 

alterations due to file encryption. Our method stands out by rapidly detecting ransomware through 

strategic decoy files, apt for real-time system monitoring. 

Beyond behavior-centric strategies, deception-focused approaches have also been explored. 

Chakkaravarthy et al. (Chakkaravarthy, S.S., 2020) proposed a strategy for identifying ransomware in 

IoT contexts, monitoring factors like CPU load and memory consumption. Feng et al. (Feng, Y., 2017) 

advocated for a decoy file-centric framework, while Moore (Moore, C., 2016) delved into creating 

honeypots. Kok et al. (Kok, S., 2019) presented comprehensive ransomware analysis, discussing pros 
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and cons of contemporary techniques. In contrast, our research introduces an enhanced decoy 

distribution strategy, boosting resistance to random access attacks. 

There are some approaches utilize machine-learning techniques for ransomware detection. 

Takeuchiet al. (Takeuchi, Y., 2018) centered on n-grams from API sequences, applying them to SVM 

classifiers. Poudyal et al. (Poudyal, S., 2018) introduced a model focusing on assembly-level attributes. 

Various algorithms, from decision trees to random forests, were deployed for classification tasks. 

Maniath et al. (Maniath, S., 2017) implemented an LSTM neural network. Cusack et al. proposed a 

method that analyzes network traffic characteristics for detection. Subsequent studies (Poudyal, S., 

2019) (Almashhadani, A.O., 2019) (Chen, Z.G., 2017) (Sharmeen, S., 2020) (Bae, S.I., 2020) employed 

diverse machine-learning algorithms, from deep learning to SVM, for effective detection. However, 

these (Takeuchi, Y., 2018) (Poudyal, S., 2018) (Maniath, S., 2017) (Cusack, G., 2018) (Poudyal, S., 

2019) (Almashhadani, A.O., 2019) (Chen, Z.G., 2017) (Sharmeen, S., 2020) (Bae, S.I., 2020) typically 

assume a sandboxed environment, ensuring ample analysis time and bypassing potential system 

overheads. 

 

Figure 1: Process Flow of File System Partitioning 

3 Proposed Method 

Our deception-based protection method is devised to ensure the even distribution of decoy files across 

the entire file system while preventing their clustering in specific, closely located areas. Initially, the 

method employs a graph clustering algorithm to evenly partition the entire file system tree into multiple 

subfile systems. Subsequently, directories within each subfile system are strategically chosen for 

deploying the decoy files, considering ransomware access patterns. Once the locations for each decoy 

file are determined, they are generated and distributed accordingly. Each deployed decoy file is actively 

monitored to detect any manipulation. The key steps of the deception-based protection module are 

elaborated in the following subsections.  

File System Partitioning Module 

To partition the file system, the module employes the spectral clustering method (Chen, B., 2014). 

Spectral clustering is a technique rooted in graph theory, where it identifies groups of nodes in a graph 

based on their interconnectedness via edges. Through this graph clustering process, it is possible to 

derive subfile systems from the overall file system structure. 
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Figure 1 illustrates the process of file system clustering using the spectral clustering algorithm. 

Initially, a tree-shaped file system is represented in a fundamental graph format. In this representation, 

each node within the graph corresponds to a directory in the file system, and the presence of an edge 

between two nodes signifies direct accessibility between those nodes. From the graph representation of 

the file system, the module constructs an affinity matrix, often referred to as a similarity matrix. This 

matrix is instrumental in quantifying the degree of similarity between every pair of nodes in the graph. 

Within the matrix, both the column and row indices correspond to individual nodes, and each matrix 

element contains a value indicating the similarity between the specific nodes specified by their respective 

row and column indices. 

The primary objective of graph clustering is to divide the file system into subgroups of directories 

that exhibit similar spatial characteristics. To assess this similarity, the concept of hopping distance is 

utilized as a metric. After generating all the hopping distances, we employ a radial basis function to 

normalize these distances, transforming them into a uniform range between zero and one. This 

normalization process ensures that all similarities are placed within the same feature space. The 

calculation of similarity is presented in Equation (1-2). 

 

 
The function hopdist () computes the hopping distance between two paths and is defined by Equation 

(1), where a and b denote the previous and current paths, respectively. The similarity calculation, as 

expressed in Equation (2), involves the variables x1 and x2, which denote directory paths. Additionally, 

γ is a gamma value that signifies the inverse of the standard deviation of the radial basis function.  

Once the affinity matrix generation is finalized, the next step involves the computation of 

eigenvectors and eigenvalues derived from this affinity matrix. These eigenvectors and eigenvalues are 

employed to embed each instance into the eigenspace, facilitating a more distinct separation of instances. 

Subsequently, the instances projected onto the eigenspace are subjected to clustering using the k-means 

algorithm (Mohamad, I.B., 2013). This process enables the generation of clusters for the entire file 

system. 

Decoy File Generation and Deployment 

After the entire file system has been partitioned, the deployment of decoy files takes place within specific 

directories. Ransomware often employs depth-first or breadth-first searches to explore the file system. 

To account for these behaviors, the decoy files are strategically deployed based on the priority order of 

directories within the DFS or BFS traversal. Therefore, within each partition, directories with either first 

or middle priority along the DFS or BFS paths are selected. In cases where two directories with first 

priority are nested, one is chosen at random.  

Algorithm 1 outlines the procedure for identifying these priority vertices within the partitions 

containing the sub-graph vertices. When generating decoy files, the decoy checker ensures that these 

files closely resemble the user's real files. This is crucial because the protection mechanism can be 

circumvented if ransomware detects poorly crafted decoy files. To achieve this, the file type of the decoy 

file matches the most common file type within the directory it belongs to. The size of the decoy file is 

set to match the average size of files of the same type within the directory.  

ℎ𝑜𝑝𝑑𝑖𝑠𝑡(a, b) = ℎ(𝑎) + ℎ(𝑏) − 2 ∗ 𝑐(𝑎, 𝑏)    (1) 

𝑆(𝑥1, 𝑥2) = exp(−𝛾 × ℎ𝑜𝑝𝑑𝑖𝑠𝑡(𝑥1, 𝑥2))        (2) 
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Additionally, the decoy file can be populated with either randomly generated values or bytes from a 

selected real file. If actual file content is used, the file must be truncated to fit the specified size of the 

decoy file. If the average size of a directory is excessive, the decoy file sizes are constrained based on 

user settings. 

Algorithm 1: Prior Vertex Identification Procedure 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

12: 

13: 

14: 

15: 

16: 

17: 

18: 

19: 

20: 

21: 

22: 

23: 

24: 

25: 

26: 

27: 

28: 

29: 

procedure identify_prior_vertexes(partitions_vset_list) 

first_vetexes ← { }  

middel_vetexes ← { } 

for all partition in partitions_vset 

// get heights 

min_height ← get_min_height(partition) 

max_height ← get_max_height(partition) 

median_height = (min_height + max_height) % 2 

// get all prior vertexes 

first_vertexes += get_vertexes(partition, min_height) 

tmp_vertexes = get_vertexes(partition, median_height) 

middle_vertexes += get_first_vertex_A_order(tmp_vertexes) 

middle_vertexes += get_median_vertex_A_order(tmp_vertexes) middle_vertexes += 

get_last_vertex_A_order(tmp_vertexes) 

 tmp_vertexes = get_vertexes(partition, max_height) 

first_vertexes += get_first_vertex_A_order(tmp_vertexes) 

 first_vertexes += get_median_vertex_A_order(tmp_vertexes) 

 first_vertexes += get_last_vertex_A_order(tmp_vertexes) 

for all vertex in first_vertexes 

//randomly remove one vertex from child-parent pair 

for all child_vertex in vertex 

 if first_vertexes.exists(child_vertex) 

if rand( ) / 2 == 0 

 first_vertexes.remove(child_vertex) 

 break 

else 

 first_vertexes.remove(vertex) 

 break 

return first_vertexes, middle_vertexes 

The decoy file names are randomly selected from a dictionary containing readable words. Lastly, the 

decoy files are configured as "Superhidden" to remain concealed from the user. Superhidden files are 

not visible to users browsing the file system through Windows Explorer, and compression tools like 

WinZip typically exclude them when compressing a directory. It's important to note that ransomware 

might attempt to enable hidden attributes of a file to avoid detection. 

Decoy File Check 

Once all the decoy files have been successfully deployed, the decoy checker initiates the monitoring of 

file input/output (I/O) activities on these decoy files. If a decoy file is accessed or tampered with, the 

decoy checker promptly takes mitigation measures, which may include alerting users and terminating 

the associated processes to prevent further damage or data loss. 
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4 Evaluation 

We conducted a series of experiments to assess the effectiveness of our proposed framework. The 

deception-based protection method aims to provide immediate prevention by intercepting ransomware 

at the precise moment it attempts to access pre-deployed decoy files.  

For the evaluation of the deception-based protection method, we conducted serveral experiments. 

Firstly, we analyzed the proposed method's ability to accurately divide the file system, ensuring the even 

distribution of decoy files. This assessment was critical in determining the module's effectiveness in 

creating a balanced distribution. 

In the second experiment, we assessed the detection performance of the deception-based module. 

Specifically, we examined how its detection capabilities were influenced by varying the number of 

partitions, which can impact the generation and distribution of decoy files.  

In our experiments, a total of 94 ransomware samples, as detailed in Table 1, were utilized in the 

experiments. Additionally, we collected a set of 100 benign samples that performed file-related 

operations, including well-known compression or encryption applications like 7-zip and WinRAR. 

These compression applications are listed in Table 2 and were employed in the experiments, and the 

artificial file system used for the experiments are described in Table 3. 

In addition, for the experiments, we simulated ransomware capable of conducting random-access 

attacks. The simulated ransomware utilizes PowerShell (Microsoft, 2023), a command-line shell, to 

obtain a comprehensive list of all files within the file system. Subsequently, it randomly selects a file 

path to access. Upon selecting a file, the ransomware proceeds to encrypt it and then deletes the original 

file. This cycle of file selection, encryption, and deletion continues iteratively until all files are encrypted. 

The ransomware was executed repeatedly, and the number of encrypted files was recorded for analysis. 

Table 1: Ransomwares Samples  

Name The number of samples 

Locky 14 

WannaCry 49 

Crypto Wall 10 

Goldeneye 9 

Cerber 7 

Maktublocker 5 

 Table 2: Compression/Encryption Applications 

Name Version 

7-zip 19.00 

WinZip 25 

WinRAR 6.02 

Crococrypt 1.6 

AxCrypt 2.11.6 

Table 3: Artificial File System Information 

Operating system Windows 7 

Root directory C:\\ 

# of directories 689 

# of files (text files) 9,713 

Size of file system 11.7 GB 
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Figure 2: Sub-file Systems Partied by the Spectral Clustering Algorithm (a): 2-Cluster Partition, (b): 3-

Cluster Partition, (c): 4-Cluster Partition, (d): 5-Cluster Partition (The Nodes in the Same Color Mean that 

they are in the Same Cluster Partition) 

Performance of File System Partitioning 

The proposed deception-based protection method employs clustering to determine both the number of 

decoy files required and the precise location for each decoy file. Consequently, we initially scrutinized 

the results of file system clustering to assess the method's performance accurately. The file system 

clustering results, as depicted in the graphs shown in Figure 2, were achieved by partitioning the file 

system into several subtrees using the spectral clustering algorithm. Within these graphs, each node 

signifies a directory within the artificial file system, and the color assigned to each node indicates its 

cluster type. For instance, in Figure 2(a), the red and green nodes belong to different clusters. The 

spectral clustering algorithm employs a similarity measure method based on the hopping distance 

between directory nodes. As a result, clusters are composed of directories that are near each other. In 

Figure 2, the subfile systems are characterized by nodes that are geographically close. 

The artificial file system employed in our experiments consisted of two identical primary subtrees. 

Initially, a directory was created containing a total of 19,426 files and 1,378 subdirectories. This 

directory was then duplicated to generate another directory containing the exact same files and 

subdirectories as the original. These two identical directories were subsequently placed in the root 

directory. In this controlled environment, we anticipated that accurate file system clustering would result 

in the identification of two subfile systems that were either identical or very similar. 

As depicted in Figure 2, our clustering results confirm the presence of the same subfile system 

clusters across all clustering cases. Specifically, in the instances of two and three cluster partitions, we 

observed one pair of identical subfile systems. In cases involving four and five cluster partitions, two 

pairs of identical subfile systems were identified. 
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Ransomware Detection Performance 

The performance of the deception-based protection method was assessed using both ransomware 

samples and benign samples, as listed in Tables 2 and 3. This method employs hidden files as decoys, 

ensuring that benign programs do not interact with them. As expected, there were no instances of missed 

detection; in other words, the proposed method did not incorrectly flag any benign program as 

ransomware. Conversely, all the ransomware samples fell into the trap and approached the first decoy 

file located in the root directory of the artificial file system. These experimental results shows that the 

ransomware typically traverses directories in a depth-first search (DFS) order. In this experiment, 

determining whether a process exhibited ransomware-like behavior or not was a straightforward matter 

of implementation. While it's true that the current samples can be detected with just one decoy file in the 

root directory, it's essential to acknowledge that future ransomware may not consistently access the root 

directory first. The possibility that ransomware might employ random access patterns must be 

considered. To address this potential scenario, the methods for generating and deploying decoy files 

were specifically designed to handle assumed random-access attacks. 

To provide a more precise evaluation of the proposed method's performance, we conducted an 

additional experiment involving newly developed ransomware that randomly accesses directories within 

the file system. The experimental results depicted in Figure 3 illustrate how the number of encrypted 

files varies as the number of partitions changes. As shown in the figure, there is a noticeable decrease in 

the number of files encrypted by the ransomware as the number of partitions increases. In essence, finer 

partitioning of the file system leads to a significant reduction in the number of corrupted files. For 

instance, when 100 partitions were utilized for deploying the decoy, the number of encrypted files 

dropped from 3,493 to 23. Furthermore, the file system could be efficiently protected using only a small 

set of decoy files. For example, with 18 decoy files for three subfile systems, approximately 95% of the 

files were protected on average. When 120 decoy files were employed for 20 partitions, around 99% of 

the files were protected. Table 4 provides the exact values of the number of encrypted files, which 

represent the average results from 100 repeated measurements. Ultimately, the adjustment of the decoy 

file size depends on the user's discretion. However, it is more favorable to enhance user file protection 

by dividing the file system into numerous partitions and evenly distributing a greater number of decoy 

files. 

  

Figure 3: The Number of Encrypted Files by the no. of Sub-file System 
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Table 4.  Experimental Results for the Random-access Attack 

# of partitions # of decoys  Avg size of a partition # of encrypted 

1 6 20,832 3493(17.98%) 

2 12 10,416 1678(8.64%) 

3 18 6,944 991(5.1%) 

4 24 5,208 781(4%)) 

5 30 4,166 704(3.62%) 

6 34 3,472 562(2.89%) 

7 40 2,976 425(2.19%) 

8 46 2,604 444(2.29) 

9 52 2,314 345(1.78%) 

10 58 2,083 459(2.36%) 

20 119 1,041 214(1.10%) 

30 172 694 107(0.55%) 

40 219 520 76(0.39%) 

50 276 416 62(0.32%) 

60 332 347 51(0.26) 

70 389 297 30(0.15%) 

80 438 260 16(0.08%) 

90 477 231 25(0.13%) 

100 528 208 23(0.12%) 

5 Conclusion 

Many previous deception-based methods have faced challenges when it comes to avoiding detection 

through random-access attacks. This is often due to the placement of decoy files, which are typically 

concentrated in the root directory or in close proximity to each other. In our paper, we propose methods 

to address this limitation. We designed a novel deception-based approach that evenly distributes decoy 

files using the spectral clustering algorithm. Our experiments have shown that, on average, 

approximately 95% of files were protected using just 18 decoy files for three subfile systems. 

Furthermore, when 120 decoy files were deployed across 20 subfile systems, 99% of files were 

safeguarded. Our deception-based detection method is capable of providing a high level of security while 

requiring only a small number of decoy files, making it an efficient and effective solution. 
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