
191

Deception-based Method for Ransomware Detection

TaeGuen Kim1*

1* Department of Information Security, Soonchunhyang University, Korea. tg.kim@sch.ac.kr,

Orcid: https://orcid.org/ 0000-0002-6586-2037

Received: June 22, 2023; Accepted: August 23, 2023; Published: August 30, 2023

Abstract

Ransomware is a rapidly growing malware threat that encrypts a user's files and demands a ransom

for the decryption key. It has caused significant financial harm worldwide and is difficult to detect,

especially when it's a new, unknown zero-day ransomware. Most commercial antivirus software

relies on signature-based detection, which can be slow and inadequate for swiftly identifying

suspicious programs. To tackle these challenges, this paper presents a ransomware protection

method utilizing decoy files. Our deception-based protection method enhances ransomware

detection with a fair decoy deployment strategy. Our method offers the advantage of robustly

detecting ransomware compared to existing deception-based methods. Furthermore, it can

effectively address ransomware that employs random access attacks, thereby bypassing deception-

based detection techniques. In the evaluation, we provide a comprehensive analysis of our

experimental results to vividly demonstrate the efficacy of our proposed method. Specifically, we

introduce a random-access attack scenario that could potentially circumvent deception-based

protection mechanisms. Furthermore, we assess the resilience of our method against such random-

access attacks.

Keywords: Deception-based Method, Malware Detection, Ransomware Detection.

1 Introduction

Ransomware attacks targeting Windows-based systems has been observed globally, with a

corresponding rise in the victim count. A report from Secure List (Securelist, 2021) indicated that in

2020, around 1,091,454 unique users experienced ransomware threats on their devices. Another report

by Trend Micro (Trend Micro, 2021) highlighted that in May 2017 alone, WannaCry infected over

200,000 individuals across 150 nations. While ransomware shares several characteristics with typical

malware, it possesses a distinct trait. Ransomware performs the file operations swiftly to encrypt users’

system files. Moreover, once a system is compromised and files get encrypted, decrypting them without

the necessary keys becomes a very difficult task (Ferreira, A.P., 2021). Even with comprehensive

manual techniques like reverse engineering to unveil the ransomware's actions, the decryption keys

might remain elusive, especially if they are to be transmitted from a remote server. Hence, when a system

gets infiltrated by ransomware, the prospects of restoring it without the perpetrator’s intervention

diminish considerably.

Historically, antivirus solutions have relied on signature-based detection techniques to identify

malware (Al-Asli, M., 2019). These methods use static patterns, sourced from recognized malicious

binaries, to check if unfamiliar binaries are malicious. The patterns, in signature-based detections,

Journal of Internert Services and Information Security (JISIS), volume: 13, number: 3 (August), pp. 191-201

DOI: 10.58346/JISIS.2023.I3.012

*Corresponding author: Department of Information Security, Soonchunhyang University, Korea.

Deception-based Method for Ransomware Detection TaeGuen Kim.

192

encompass strings and features of disassembled codes. While these methods are good at finding malware

variations, they struggle with new, unknown threats because the patterns for such malware haven't been

found yet. Signature-based methods may not detect malware types that change quickly and produce

many versions (Nieuwenhuizen, D., 2017). Even though some methods use patterns from complex

dynamic analysis results, most antivirus software in a user system cannot perform dynamic analysis

because it takes a lot of computing power (Bayer, U., 2006). To overcome the limitation, many

ransomware detection approaches have been proposed. The existing approaches can be divided into two

methods: deception-based method and behavior-based method. Deception-based methods use fake files

to detect when these files are accessed, while behavior-based ones watch file activities to see if anything

unusual is happening. We are primarily dedicated to the development of a novel deception-based

ransomware detection method that offers deterministic ransomware detection among various available

approaches. Unlike previous deception-based methods, which struggle with random-access attacks

caused by decoy files closely located in the root directory, our proposed method can effectively detect

ransomware that employs random access attacks with only a few decoy files distributed across the user

subfile systems. In order to efficiently combat ransomware that employs random access attacks, our

methods employ the spectral clustering algorithm to evenly distribute decoy files.

2 Related Works

Many previous research has delved into understanding the operations of ransomware within a victim's

system. Daniel et al. (Gonzalez, D., 2017) explored the behaviors of prevalent ransomwares and assessed

various preventive measures. Gazet (Gazet, A., 2010) Conducted research on early-emerging

ransomware samples to decipher their behaviors. They employed reverse engineering to scrutinize

fifteen samples, focusing on malware features and cryptographic elements. Pathak et al. (Pathak, P.B.,

2016) examined several ransomware samples, detailing the distinct behaviors of each. They also put

forward preventive measures, like regular file backups and timely updates of security tools. Cabaj et al.

(Cabaj, K., 2015) executed an in-depth study on CryptoWall, revealing that it communicates via the

HTTP protocol and employs concealment tactics, including Tor and misleading DNS.

To shed light on ransomware characteristics, numerous studies proposing protection strategies have

been introduced. Jung et al. (Jung, S., 2018), along with Lee et al. (Lee, K., 2019), put forward models

to assess the entropy in file binary content, ascertaining if a file system's files are encrypted. Scaife et

al. (Scaife, N., 2016) introduced a behavior-oriented strategy for defense against ransomware, utilizing

specific indicators to identify any resemblance to ransomware activities. Kharaz et al. (Kharaz, A., 2016)

unveiled a system, UNVEIL, that dynamically detects ransomware by monitoring I/O actions and

evaluating data entropy. Moreover, it uses screenshots to match against known ransomware visuals.

Continella et al. (Continella, A., 2016) crafted ShieldFS, aiming to safeguard Windows systems. Al-

Rimy et al. (Al-Rimy, B.A.S., 2020) unveiled a technique for spotting ransomware's encrypting patterns.

Methods presented in (Jung, S., 2018) (Lee, K., 2019) (Scaife, N., 2016) (Kharaz, A., 2016) (Continella,

A., 2016) (Al-Rimy, B.A.S., 2020) recognize ransomware intrusions based on extensive system

alterations due to file encryption. Our method stands out by rapidly detecting ransomware through

strategic decoy files, apt for real-time system monitoring.

Beyond behavior-centric strategies, deception-focused approaches have also been explored.

Chakkaravarthy et al. (Chakkaravarthy, S.S., 2020) proposed a strategy for identifying ransomware in

IoT contexts, monitoring factors like CPU load and memory consumption. Feng et al. (Feng, Y., 2017)

advocated for a decoy file-centric framework, while Moore (Moore, C., 2016) delved into creating

honeypots. Kok et al. (Kok, S., 2019) presented comprehensive ransomware analysis, discussing pros

Deception-based Method for Ransomware Detection TaeGuen Kim.

193

and cons of contemporary techniques. In contrast, our research introduces an enhanced decoy

distribution strategy, boosting resistance to random access attacks.

There are some approaches utilize machine-learning techniques for ransomware detection.

Takeuchiet al. (Takeuchi, Y., 2018) centered on n-grams from API sequences, applying them to SVM

classifiers. Poudyal et al. (Poudyal, S., 2018) introduced a model focusing on assembly-level attributes.

Various algorithms, from decision trees to random forests, were deployed for classification tasks.

Maniath et al. (Maniath, S., 2017) implemented an LSTM neural network. Cusack et al. proposed a

method that analyzes network traffic characteristics for detection. Subsequent studies (Poudyal, S.,

2019) (Almashhadani, A.O., 2019) (Chen, Z.G., 2017) (Sharmeen, S., 2020) (Bae, S.I., 2020) employed

diverse machine-learning algorithms, from deep learning to SVM, for effective detection. However,

these (Takeuchi, Y., 2018) (Poudyal, S., 2018) (Maniath, S., 2017) (Cusack, G., 2018) (Poudyal, S.,

2019) (Almashhadani, A.O., 2019) (Chen, Z.G., 2017) (Sharmeen, S., 2020) (Bae, S.I., 2020) typically

assume a sandboxed environment, ensuring ample analysis time and bypassing potential system

overheads.

Figure 1: Process Flow of File System Partitioning

3 Proposed Method

Our deception-based protection method is devised to ensure the even distribution of decoy files across

the entire file system while preventing their clustering in specific, closely located areas. Initially, the

method employs a graph clustering algorithm to evenly partition the entire file system tree into multiple

subfile systems. Subsequently, directories within each subfile system are strategically chosen for

deploying the decoy files, considering ransomware access patterns. Once the locations for each decoy

file are determined, they are generated and distributed accordingly. Each deployed decoy file is actively

monitored to detect any manipulation. The key steps of the deception-based protection module are

elaborated in the following subsections.

File System Partitioning Module

To partition the file system, the module employes the spectral clustering method (Chen, B., 2014).

Spectral clustering is a technique rooted in graph theory, where it identifies groups of nodes in a graph

based on their interconnectedness via edges. Through this graph clustering process, it is possible to

derive subfile systems from the overall file system structure.

Deception-based Method for Ransomware Detection TaeGuen Kim.

194

Figure 1 illustrates the process of file system clustering using the spectral clustering algorithm.

Initially, a tree-shaped file system is represented in a fundamental graph format. In this representation,

each node within the graph corresponds to a directory in the file system, and the presence of an edge

between two nodes signifies direct accessibility between those nodes. From the graph representation of

the file system, the module constructs an affinity matrix, often referred to as a similarity matrix. This

matrix is instrumental in quantifying the degree of similarity between every pair of nodes in the graph.

Within the matrix, both the column and row indices correspond to individual nodes, and each matrix

element contains a value indicating the similarity between the specific nodes specified by their respective

row and column indices.

The primary objective of graph clustering is to divide the file system into subgroups of directories

that exhibit similar spatial characteristics. To assess this similarity, the concept of hopping distance is

utilized as a metric. After generating all the hopping distances, we employ a radial basis function to

normalize these distances, transforming them into a uniform range between zero and one. This

normalization process ensures that all similarities are placed within the same feature space. The

calculation of similarity is presented in Equation (1-2).

The function hopdist () computes the hopping distance between two paths and is defined by Equation

(1), where a and b denote the previous and current paths, respectively. The similarity calculation, as

expressed in Equation (2), involves the variables x1 and x2, which denote directory paths. Additionally,

γ is a gamma value that signifies the inverse of the standard deviation of the radial basis function.

Once the affinity matrix generation is finalized, the next step involves the computation of

eigenvectors and eigenvalues derived from this affinity matrix. These eigenvectors and eigenvalues are

employed to embed each instance into the eigenspace, facilitating a more distinct separation of instances.

Subsequently, the instances projected onto the eigenspace are subjected to clustering using the k-means

algorithm (Mohamad, I.B., 2013). This process enables the generation of clusters for the entire file

system.

Decoy File Generation and Deployment

After the entire file system has been partitioned, the deployment of decoy files takes place within specific

directories. Ransomware often employs depth-first or breadth-first searches to explore the file system.

To account for these behaviors, the decoy files are strategically deployed based on the priority order of

directories within the DFS or BFS traversal. Therefore, within each partition, directories with either first

or middle priority along the DFS or BFS paths are selected. In cases where two directories with first

priority are nested, one is chosen at random.

Algorithm 1 outlines the procedure for identifying these priority vertices within the partitions

containing the sub-graph vertices. When generating decoy files, the decoy checker ensures that these

files closely resemble the user's real files. This is crucial because the protection mechanism can be

circumvented if ransomware detects poorly crafted decoy files. To achieve this, the file type of the decoy

file matches the most common file type within the directory it belongs to. The size of the decoy file is

set to match the average size of files of the same type within the directory.

ℎ𝑜𝑝𝑑𝑖𝑠𝑡(a, b) = ℎ(𝑎) + ℎ(𝑏) − 2 ∗ 𝑐(𝑎, 𝑏) (1)

𝑆(𝑥1, 𝑥2) = exp(−𝛾 × ℎ𝑜𝑝𝑑𝑖𝑠𝑡(𝑥1, 𝑥2)) (2)

Deception-based Method for Ransomware Detection TaeGuen Kim.

195

Additionally, the decoy file can be populated with either randomly generated values or bytes from a

selected real file. If actual file content is used, the file must be truncated to fit the specified size of the

decoy file. If the average size of a directory is excessive, the decoy file sizes are constrained based on

user settings.

Algorithm 1: Prior Vertex Identification Procedure

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

24:

25:

26:

27:

28:

29:

procedure identify_prior_vertexes(partitions_vset_list)

first_vetexes ← { }

middel_vetexes ← { }

for all partition in partitions_vset

// get heights

min_height ← get_min_height(partition)

max_height ← get_max_height(partition)

median_height = (min_height + max_height) % 2

// get all prior vertexes

first_vertexes += get_vertexes(partition, min_height)

tmp_vertexes = get_vertexes(partition, median_height)

middle_vertexes += get_first_vertex_A_order(tmp_vertexes)

middle_vertexes += get_median_vertex_A_order(tmp_vertexes) middle_vertexes +=

get_last_vertex_A_order(tmp_vertexes)

 tmp_vertexes = get_vertexes(partition, max_height)

first_vertexes += get_first_vertex_A_order(tmp_vertexes)

 first_vertexes += get_median_vertex_A_order(tmp_vertexes)

 first_vertexes += get_last_vertex_A_order(tmp_vertexes)

for all vertex in first_vertexes

//randomly remove one vertex from child-parent pair

for all child_vertex in vertex

 if first_vertexes.exists(child_vertex)

if rand() / 2 == 0

 first_vertexes.remove(child_vertex)

 break

else

 first_vertexes.remove(vertex)

 break

return first_vertexes, middle_vertexes

The decoy file names are randomly selected from a dictionary containing readable words. Lastly, the

decoy files are configured as "Superhidden" to remain concealed from the user. Superhidden files are

not visible to users browsing the file system through Windows Explorer, and compression tools like

WinZip typically exclude them when compressing a directory. It's important to note that ransomware

might attempt to enable hidden attributes of a file to avoid detection.

Decoy File Check

Once all the decoy files have been successfully deployed, the decoy checker initiates the monitoring of

file input/output (I/O) activities on these decoy files. If a decoy file is accessed or tampered with, the

decoy checker promptly takes mitigation measures, which may include alerting users and terminating

the associated processes to prevent further damage or data loss.

Deception-based Method for Ransomware Detection TaeGuen Kim.

196

4 Evaluation

We conducted a series of experiments to assess the effectiveness of our proposed framework. The

deception-based protection method aims to provide immediate prevention by intercepting ransomware

at the precise moment it attempts to access pre-deployed decoy files.

For the evaluation of the deception-based protection method, we conducted serveral experiments.

Firstly, we analyzed the proposed method's ability to accurately divide the file system, ensuring the even

distribution of decoy files. This assessment was critical in determining the module's effectiveness in

creating a balanced distribution.

In the second experiment, we assessed the detection performance of the deception-based module.

Specifically, we examined how its detection capabilities were influenced by varying the number of

partitions, which can impact the generation and distribution of decoy files.

In our experiments, a total of 94 ransomware samples, as detailed in Table 1, were utilized in the

experiments. Additionally, we collected a set of 100 benign samples that performed file-related

operations, including well-known compression or encryption applications like 7-zip and WinRAR.

These compression applications are listed in Table 2 and were employed in the experiments, and the

artificial file system used for the experiments are described in Table 3.

In addition, for the experiments, we simulated ransomware capable of conducting random-access

attacks. The simulated ransomware utilizes PowerShell (Microsoft, 2023), a command-line shell, to

obtain a comprehensive list of all files within the file system. Subsequently, it randomly selects a file

path to access. Upon selecting a file, the ransomware proceeds to encrypt it and then deletes the original

file. This cycle of file selection, encryption, and deletion continues iteratively until all files are encrypted.

The ransomware was executed repeatedly, and the number of encrypted files was recorded for analysis.

Table 1: Ransomwares Samples

Name The number of samples

Locky 14

WannaCry 49

Crypto Wall 10

Goldeneye 9

Cerber 7

Maktublocker 5

 Table 2: Compression/Encryption Applications

Name Version

7-zip 19.00

WinZip 25

WinRAR 6.02

Crococrypt 1.6

AxCrypt 2.11.6

Table 3: Artificial File System Information

Operating system Windows 7

Root directory C:\\

of directories 689

of files (text files) 9,713

Size of file system 11.7 GB

Deception-based Method for Ransomware Detection TaeGuen Kim.

197

Figure 2: Sub-file Systems Partied by the Spectral Clustering Algorithm (a): 2-Cluster Partition, (b): 3-

Cluster Partition, (c): 4-Cluster Partition, (d): 5-Cluster Partition (The Nodes in the Same Color Mean that

they are in the Same Cluster Partition)

Performance of File System Partitioning

The proposed deception-based protection method employs clustering to determine both the number of

decoy files required and the precise location for each decoy file. Consequently, we initially scrutinized

the results of file system clustering to assess the method's performance accurately. The file system

clustering results, as depicted in the graphs shown in Figure 2, were achieved by partitioning the file

system into several subtrees using the spectral clustering algorithm. Within these graphs, each node

signifies a directory within the artificial file system, and the color assigned to each node indicates its

cluster type. For instance, in Figure 2(a), the red and green nodes belong to different clusters. The

spectral clustering algorithm employs a similarity measure method based on the hopping distance

between directory nodes. As a result, clusters are composed of directories that are near each other. In

Figure 2, the subfile systems are characterized by nodes that are geographically close.

The artificial file system employed in our experiments consisted of two identical primary subtrees.

Initially, a directory was created containing a total of 19,426 files and 1,378 subdirectories. This

directory was then duplicated to generate another directory containing the exact same files and

subdirectories as the original. These two identical directories were subsequently placed in the root

directory. In this controlled environment, we anticipated that accurate file system clustering would result

in the identification of two subfile systems that were either identical or very similar.

As depicted in Figure 2, our clustering results confirm the presence of the same subfile system

clusters across all clustering cases. Specifically, in the instances of two and three cluster partitions, we

observed one pair of identical subfile systems. In cases involving four and five cluster partitions, two

pairs of identical subfile systems were identified.

Deception-based Method for Ransomware Detection TaeGuen Kim.

198

Ransomware Detection Performance

The performance of the deception-based protection method was assessed using both ransomware

samples and benign samples, as listed in Tables 2 and 3. This method employs hidden files as decoys,

ensuring that benign programs do not interact with them. As expected, there were no instances of missed

detection; in other words, the proposed method did not incorrectly flag any benign program as

ransomware. Conversely, all the ransomware samples fell into the trap and approached the first decoy

file located in the root directory of the artificial file system. These experimental results shows that the

ransomware typically traverses directories in a depth-first search (DFS) order. In this experiment,

determining whether a process exhibited ransomware-like behavior or not was a straightforward matter

of implementation. While it's true that the current samples can be detected with just one decoy file in the

root directory, it's essential to acknowledge that future ransomware may not consistently access the root

directory first. The possibility that ransomware might employ random access patterns must be

considered. To address this potential scenario, the methods for generating and deploying decoy files

were specifically designed to handle assumed random-access attacks.

To provide a more precise evaluation of the proposed method's performance, we conducted an

additional experiment involving newly developed ransomware that randomly accesses directories within

the file system. The experimental results depicted in Figure 3 illustrate how the number of encrypted

files varies as the number of partitions changes. As shown in the figure, there is a noticeable decrease in

the number of files encrypted by the ransomware as the number of partitions increases. In essence, finer

partitioning of the file system leads to a significant reduction in the number of corrupted files. For

instance, when 100 partitions were utilized for deploying the decoy, the number of encrypted files

dropped from 3,493 to 23. Furthermore, the file system could be efficiently protected using only a small

set of decoy files. For example, with 18 decoy files for three subfile systems, approximately 95% of the

files were protected on average. When 120 decoy files were employed for 20 partitions, around 99% of

the files were protected. Table 4 provides the exact values of the number of encrypted files, which

represent the average results from 100 repeated measurements. Ultimately, the adjustment of the decoy

file size depends on the user's discretion. However, it is more favorable to enhance user file protection

by dividing the file system into numerous partitions and evenly distributing a greater number of decoy

files.

Figure 3: The Number of Encrypted Files by the no. of Sub-file System

0

300

600

900

1200

1500

1800

2100

2400

2700

3000

3300

3600

3900

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100

#
 o

f
e
n

c
ry

p
te

d
 f

il
e
s

of partitions of the whole file system

Deception-based Method for Ransomware Detection TaeGuen Kim.

199

Table 4. Experimental Results for the Random-access Attack

of partitions # of decoys Avg size of a partition # of encrypted

1 6 20,832 3493(17.98%)

2 12 10,416 1678(8.64%)

3 18 6,944 991(5.1%)

4 24 5,208 781(4%))

5 30 4,166 704(3.62%)

6 34 3,472 562(2.89%)

7 40 2,976 425(2.19%)

8 46 2,604 444(2.29)

9 52 2,314 345(1.78%)

10 58 2,083 459(2.36%)

20 119 1,041 214(1.10%)

30 172 694 107(0.55%)

40 219 520 76(0.39%)

50 276 416 62(0.32%)

60 332 347 51(0.26)

70 389 297 30(0.15%)

80 438 260 16(0.08%)

90 477 231 25(0.13%)

100 528 208 23(0.12%)

5 Conclusion

Many previous deception-based methods have faced challenges when it comes to avoiding detection

through random-access attacks. This is often due to the placement of decoy files, which are typically

concentrated in the root directory or in close proximity to each other. In our paper, we propose methods

to address this limitation. We designed a novel deception-based approach that evenly distributes decoy

files using the spectral clustering algorithm. Our experiments have shown that, on average,

approximately 95% of files were protected using just 18 decoy files for three subfile systems.

Furthermore, when 120 decoy files were deployed across 20 subfile systems, 99% of files were

safeguarded. Our deception-based detection method is capable of providing a high level of security while

requiring only a small number of decoy files, making it an efficient and effective solution.

References

[1] Al-Asli, M., & Ghaleb, T.A. (2019). Review of signature-based techniques in antivirus products.

In International Conference on Computer and Information Sciences (ICCIS), 1-6.

[2] Almashhadani, A.O., Kaiiali, M., Sezer, S., & O’Kane, P. (2019). A multi-classifier network-

based crypto ransomware detection system: A case study of locky ransomware. IEEE Access, 7,

47053-47067.

[3] Al-Rimy, B.A.S., Maarof, M.A., Alazab, M., Alsolami, F., Shaid, S.Z.M., Ghaleb, F.A., AL-

Hadhrami, T., & Ali, A.M. (2020). A pseudo feedback-based annotated TF-IDF technique for

dynamic crypto-ransomware pre-encryption boundary delineation and features extraction. IEEE

Access, 8, 140586-140598.

[4] Bae, S.I., Lee, G.B., & Im E.G. (2020). Ransomware detection using machine learning

algorithms. Concurrency and Computation: Practice and Experience, 32(18).

[5] Bayer, U., Moser, A., Kruegel, C., & Kirda, E. (2006). Dynamic analysis of malicious code.

Journal in Computer Virology, 2(1), 67-77.

Deception-based Method for Ransomware Detection TaeGuen Kim.

200

[6] Cabaj, K., Gawkowski, P., Grochowski, K., & Osojca, D. (2015). Network activity analysis of

CryptoWall ransomware. Przeglad Elektrotechniczny, 91(11), 201-204.

[7] Chakkaravarthy, S.S., Sangeetha, D., Cruz, M.V., Vaidehi, V., & Raman, B. (2020). Design of

Intrusion Detection Honeypot Using Social Leopard Algorithm to Detect IoT Ransomware

Attacks. IEEE Access, 8, 169944-169956.

[8] Chen, B., Wang, Y.L., Gong, F.Y., Wang, X.L., & Yang, C.H. (2014). A spectral clustering

algorithm for automatically determining clusters number. In World Congress on Intelligent

Control and Automation, 3723-3728.

[9] Chen, Z.G., Kang, H.S., Yin, S.N., & Kim, S.R. (2017). Automatic ransomware detection and

analysis based on dynamic API calls flow graph. In International Conference on Research in

Adaptive and Convergent Systems, 196-201.

[10] Continella, A., Guagnelli, A., Zingaro, G., De Pasquale, G., Barenghi, A., Zanero, S., & Maggi,

F. (2016). ShieldFS: a self-healing, ransomware-aware filesystem. In Annual Conference on

Computer Security Applications, 336-347.

[11] Cusack, G., Michel, O., & Keller, E. (2018). Machine learning-based detection of ransomware

using SDN. In ACM International Workshop on Security in Software Defined Networks &

Network Function Virtualization, 1-6.

[12] Feng, Y., Liu, C., & Liu, B. (2017). Poster: A new approach to detecting ransomware with

deception. In IEEE Symposium on Security and Privacy Workshops.

[13] Ferreira, A.P., Gupta, C., Inácio, P.R., & Freire, M.M. (2021). Behaviour-based Malware

Detection in Mobile Android Platforms Using Machine Learning Algorithms. Journal of

Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications (JoWUA),

12(4), 62-88.

[14] Gazet, A. (2010). Comparative analysis of various ransomware virii. Journal in Computer

Virology, 6(1), 77-90.

[15] Gonzalez, D., & Hayajneh, T. (2017). Detection and prevention of crypto-ransomware. In IEEE

8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference

(UEMCON), 472-478.

[16] Jung, S., & Won, Y. (2018). Ransomware detection method based on context-aware entropy

analysis. Soft Computing, 22(20), 6731-6740.

[17] Kharaz, A., Arshad, S., Mulliner, C., Robertson, W., & Kirda, E. (2016). UNVEIL: A large-

scale, automated approach to detecting ransomware. In USENIX Security Symposium, 757-772.

[18] Kok, S., Abdullah, A., Jhanjhi, N., & Supramaniam, M. (2019). Ransomware, threat and

detection techniques: A review. International Journal of Computer Science and Network

Security, 19(2), 136-146.

[19] Lee, K., Lee, S.Y., & Yim, K. (2019). Machine learning-based file entropy analysis for

ransomware detection in backup systems. IEEE Access, 7, 110205-110215.

[20] Maniath, S., Ashok, A., Poornachandran, P., Sujadevi, V.G., AU, P.S., & Jan, S. (2017). Deep

learning LSTM based ransomware detection. In Recent Developments in Control, Automation

& Power Engineering (RDCAPE), 442-446.

[21] Menard, S. (2002). Applied logistic regression analysis (No. 106).

[22] Microsoft. (2023). Powershell introduction, https://docs.microsoft.com/ko-

kr/powershell/scripting/overview?view=powershell-7.1

[23] Mohamad, I.B., & Usman, D. (2013). Standardization and its effects on K-means clustering

algorithm. Research Journal of Applied Sciences, Engineering and Technology, 6(17), 3299-

3303.

[24] Moore, C. (2016). Detecting ransomware with honeypot techniques. In Cybersecurity and

Cyberforensics Conference (CCC), 77-81.

[25] Nieuwenhuizen, D. (2017). A behavioral-based approach to ransomware detection. MWR Labs

Whitepaper.

Deception-based Method for Ransomware Detection TaeGuen Kim.

201

[26] Pathak, P.B., & Nanded, Y.M. (2016). A dangerous trend of cybercrime: ransomware growing

challenge. In International Journal of Advanced Research in Computer Engineering &

Technology (IJARCET), 5(2), 371-373.

[27] Poudyal, S., Dasgupta, D., Akhtar, Z., & Gupta, K. (2019). A multi-level ransomware detection

framework using natural language processing and machine learning. In International

Conference on Malicious and Unwanted Software (MALCON), 1-8.

[28] Poudyal, S., Subedi, K.P., & Dasgupta, D. (2018). A framework for analyzing ransomware using

machine learning. In IEEE Symposium Series on Computational Intelligence (SSCI), 1692-1699.

[29] Scaife, N., Carter, H., Traynor, P., & Butler, K.R. (2016). Cryptolock (and drop it): stopping

ransomware attacks on user data. In IEEE International Conference on Distributed Computing

Systems (ICDCS), 303-312.

[30] Securelist. (2021). Ransomware by the numbers: Reassessing the threat’s global impact,

https://securelist.com/ransomware-by-the-numbers-reassessing-the-threats-global-

impact/101965/

[31] Sharmeen, S., Ahmed, Y.A., Huda, S., Kocer, B.S., & Hassan, M.M. (2020). Avoiding future

digital extortion through robust protection against ransomware threats using deep learning based

adaptive approaches. IEEE Access, 8, 24522-24534.

[32] Takeuchi, Y., Sakai, K., & Fukumoto, S. (2018). Detecting ransomware using support vector

machines. In International Conference on Parallel Processing Companion, 1-6.

[33] Trend Micro. (2021). Preventing WannaCry (WCRY) ransomware attacks using Trend Micro

products, https://success.trendmicro.com/solution/1117391-preventing-wannacry-wcry-

ransomware-attacks-using-trend-micro-products.

Author Biography

TaeGuen Kim received the B.S. degree in electronics and computer engineering and

the M.S. degree in computer and software from Hanyang University, South Korea, in

2011 and 2013, respectively. He also received the Ph. D degree in computer and

software from Hanyang University, in 2018, and he worked at Hyundai Motor

company as a senior research engineer. Currently, he is with Soonchunhyang

University as an assistant professor since March 2021. His research interests include

malware analysis, artificial intelligence, and automotive security.

