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Abstract 

The main objective of this study was to implement a computational prototype in two stages: the first 

stage primarily focused on generating efficient routes based on an evolutionary algorithm. In other 

words, the complex computational problem was solved in the first stage. The second stage then 

shifted its focus towards determining the fleet size and frequencies using an allocation algorithm. 

This approach was designed to address the complex combinatorial search problem within a public 

transportation network. In the first stage, the prototype utilizes the metaheuristic known as Genetic 

Algorithms (GA). Within the GA operators, an innovative method called "aggregated crossover" is 

employed, with an additional mutation procedure that maintains feasible descendants. In the second 

stage, an allocation algorithm is used, taking into account the routes generated in the first stage. The 

results demonstrate that in the first stage, the GA metaheuristic consistently delivers highly efficient 

routes in each run, confirming that the combinatorial complexity of the problem is effectively 

resolved in this initial phase. These results were validated on Mandl's Swiss Road network, showing 

superior solutions compared to those presented in previous studies. Notably, the execution time for 

this process is only 35 minutes. 

Keywords: Genetic Algorithm, Public Transportation, Route Design, Fleet, Frequency, 

Computational Evolutionary Processes. 

1 Introduction 

Modeling the urban transportation problem from a systemic approach perspective involves determining 

each of the components involved, such as transportation routes, transportation vehicles, users utilizing 

transportation vehicles, urban transportation service demand, the regulating entity for transportation in 

the city, service quality standards, transportation policies, as well as the growth rate of the vehicle fleet, 

population growth rate in the city, and when we add traffic light policies, modes, and control directives 

for these systems to the mix, it becomes highly complex, not only to model but also to optimize. In this 
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regard, authors like Fan and Mumford (2010) state that the Urban Traffic Routing Problem (UTRP) is 

NP-Hard and involves route design. Asadi-Bagloee and Ceder (2011) express that the transit network 

design problem is complex and cumbersome. Cipriani et al. (2012) suggest that transit network design 

is a complex non-convex problem. Similarly, Nicolić and Teodorović (2013) state that transit network 

design is one of the most critical problems faced by transit operators and city authorities worldwide, and 

they further argue that it belongs to the class of difficult combinatorial optimization problems, with a 

challenging optimal solution to discover. Kiliҫ and Gӧk (2014) also contend that the transit route design 

problem requires the use of complex combinatorial search techniques. Ahmed et al. (2019) affirm that 

the problem falls into the category of challenging combinatorial problems, with an optimal solution that 

is hard to find due to the complexity arising from the vast search space and the numerous constraints 

imposed on solution construction. 

Mahdi-Amiripour et al. (2015) argue that optimal routes must meet passenger demand matrix and 

achieve a better compromise solution for users, operators, and the community. They propose a genetic 

algorithm as a tool to handle the complexity of the problem, consisting of four steps: (1) generating a 

set of potential routes, (2) designing the bus network, (3) verifying the routes for implementation, and 

(4) examining route extensions for improvement. The proposed method is validated through a reference 

bus network and a single-set problem in the Mandl's network. On the other hand, Arbex and da-Cunha 

(2015) maintain that the multi-objective problem of transit network design and frequency setting 

(TNDFSP) involves finding a set of routes and their associated frequencies for operation in an urban 

public transportation system. TNDFSP is a difficult combinatorial optimization problem, with a large 

search space and multiple constraints, leading to numerous infeasible solutions. In their work, they 

propose an Alternate Objective Genetic Algorithm (AOGA) to efficiently solve it, aiming to cyclically 

alternate between generations. The two proposed objectives are to minimize costs for both passengers 

and operators (Saenko, I., 2014). 

When studying the transit network design problem from the perspective of mathematical 

programming, Cancela et al. (2015) defines the number and itinerary of bus routes and frequencies for 

the public transportation system, adding that the routes must cover a specific origin-destination demand, 

and they must be in harmony with users and operators. In this scenario, they review existing 

mathematical programming formulations and propose a mixed-integer linear programming (MILP) 

formulation. However, when validating their mathematical formulation on Mandl's Swiss Road network, 

they present two solutions, one with 20 routes and another with 12 routes, and compare them with the 

results of Asadi-Bagloee and Ceder (2011). This approach contrasts with a complete constructive multi-

objective algorithm where they handle the multi-criteria nature of the problem to find Pareto-optimal 

solutions, proposed by Owais and Osman (2018). They also develop a new frequency configuration 

algorithm and conduct experimental studies on two real-sized networks to validate the performance and 

robustness of their algorithm, using Mandl's Swiss Road network. 

In the same mainstream, Buba and Lee (2019) consider the Urban Transit Network Design Problem 

(UTNDP) as an NP-hard problem, characterized by a vast search space, multi-objective nature, and 

multiple constraints, making the evaluation of candidate route sets time-consuming and challenging. In 

their work, they propose a Hybrid Differential Evolution with Particle Swarm Optimization (DE-PSO) 

algorithm to solve the UTNDP, aiming to simultaneously optimize the route configuration and service 

frequency with specific objectives like minimizing costs for passengers and operators. The 

computational results of the proposed hybrid algorithm outperform the benchmark in most previous 

studies using the Mandl's Swiss Road network. 
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Yang and Jiang (2020) and Katsaragaskis et al. (2020) tackle the urban transportation problem with 

different metaheuristics, both aiming to balance costs for passengers and operators. The former 

implements an algorithm based on genetic algorithms to produce an approximate Pareto front with much 

higher solution quality and improved computational efficiency. Their experiments were conducted on 

the Mandl's network and four others. Meanwhile, the latter proposed to solve the urban transportation 

problem by implementing their algorithms based on Cat Swarm Optimization (CSO), achieving near-

optimal solutions for the problem. In particular, the latter modifies the classic cat swarm optimization 

algorithm. Concerning the urban transportation problem, Vermeir et al. (2021) argue that the state-of-

the-art lacks optimal solutions and propose a Branch-and-Bound algorithm. They introduce three 

concepts to determine optimal solutions: (1) a new domain-based group generation method, (2) the 

introduction of essential links, i.e., links that can be determined in advance and must be present in the 

optimal solution, and (3) a new network representation based on adding only additional edges. 

Experiments demonstrate their significant contribution to the algorithm's success, and the results were 

validated on Mandl's Swiss Road network. 

Finally, Jiménez-Carrión et al. (2023) presented a computational prototype for generating urban 

transportation routes, inspired by evolutionary theory, to address the complex combinatorial search 

problem of a public transportation network. The prototype uses the Python programming language for 

coding and employs the metaheuristic known as genetic algorithms (GAs). The results show that the 

computational prototype is accurate and fast, delivering highly efficient solutions in each run for the 

urban transportation problem. The results were validated on Mandl's Swiss Road network, proving to be 

better solutions than those presented in previous studies. In conclusion, the evolutionary process of the 

computational prototype converges with highly satisfactory solutions due to innovative mechanisms of 

genetic operators like crossover, mutation, and quality function, giving equal weight to the parameters 

it comprises. However, it does not determine the fleet or the frequency of buses. It has been observed 

that in each run of the computational algorithm, the percentages between direct trips and trips with 

transfers tend to vary, impacting the quality of the individual, becoming unstable even when this change 

is relatively insignificant in the results. Regarding this issue, the authors' solution for the set of 7 routes 

highlights this problem, showing substantial improvement when considering transfer minimization 

criteria. 

In this scenario, this research was proposed with the aim of improving the algorithm of the first phase 

proposed by Jiménez-Carrión et al., (2023), which had optimal results when applying innovative 

methods designed by the same author, such as the method called "reproducción agregada" (aggregated 

reproduction), which, together with an equally innovative mutation procedure called "poda" (pruning), 

always maintains feasible offspring. On the other hand, to develop the second phase to complement the 

solution, delivering the design of the routes, as well as determining the frequency on each route and the 

necessary fleet of buses. With this commitment and a clear understanding that in the urban transport 

route problem, despite conflicting interests, highly efficient routes can be generated that minimize the 

average passenger travel time, the total route time across all routes, while maximizing the percentage of 

passengers taking direct trips without transfers, satisfying the total demand. Additionally, to determine 

the necessary bus fleet and frequencies on each route, thus solving the problem of urban transport 

planning and management known as the Urban Transport Routes Problem (UTRP). The importance of 

this article is to demonstrate that the two well-defined phases of the UTRP can be performed separately, 

unlike most algorithms that combine the two phases into a single algorithm, as shown in the discussion 

section, resulting in lower-quality solutions than those defined by the proposed algorithm. Considering 

that in the second phase, fleet distribution and frequency seek a balance between demands on routes and 

repeated sections, unlike what is defined by other authors who use probability distributions like the 
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multinomial logit model, which in many cases biases demand allocation to different routes. In this case, 

we propose that the complexity of the problem is resolved in the first phase, and on the other hand, this 

contribution will serve as a tool for use by authorities responsible for the administration and control of 

urban transport, a problem that is exacerbated with the increase in the automotive fleet in cities. Finally, 

there are solutions that achieve a minimum total travel time for vehicles on all routes at the expense of 

a high average travel time per passenger. On the other hand, there are solutions that achieve a very low 

average travel time per passenger at the cost of a high travel time for vehicles on all routes. This trend 

continues to this day. For this reason, we propose that there must be an equitable compromise between 

these conflicting parameters that leads us to find highly satisfactory solutions. To this end, the following 

methodology was proposed. 

2 Methodology 

The steps to successfully complete the current research consisted of: 1) expanding the literature review 

to include articles that not only conclude with route design but also with fleet allocation and frequency 

determination; 2) using the mathematical model, problem definition, and chromosome design of the 

computational algorithm proposed by Jiménez-Carrión et al. (2023), making improvements in the 

algorithm code so that in each algorithm run after route design, it always delivers the correct quality of 

the route set for each solution, concluding with the verification of algorithm stability using a 2 x 3 

factorial design, with two factors and three levels for each factor and four repetitions; 3) developing the 

code for the second phase with its corresponding functionality for fleet allocation and frequency 

determination for each route in the route set; 4) verifying the integrity and consistency of the second-

phase algorithm; 5) conducting the analysis and discussion of results for the algorithm overall, both in 

route design and fleet allocation and frequency determination; 6) finally, drawing conclusions. 

Definition of the Problem 

As previously mentioned, the research focuses on the Mandl transportation network, shown in Figure 1, 

which is expressed as the undirected graph G = (N, A), where 'N' is the set of nodes in the network n0, 

n1, n2, n3, n4, n5, n6, n7, n8, n9, n10, n11, n12, n13, n14, and 'A' is the set of edges a(0,1), a(1,2), a(1,3), 

a(1,4), a(2,5), a(3,4), a(3,5), a(3,11), a(5,7), a(5,14), a(6,9), a(6,14), a(7,9), a(7,14), a(8,14), a(9,10), 

a(9,12), a(9,13), a(10,11), a(10,12), a(12,13). Each node or vertex ni in N represents a stop or another 

type of demand node, and each edge a (i, j) in the set A represents a weighted edge between stops i and 

j. A weight can represent the distance or travel time between nodes or vertices or can be a function of 

these parameters, as proposed by Kiliç and Gök (2014). Each edge is associated with a positive integer 

weight. Travel demands in a transportation network are expressed as a matrix called the demand matrix, 

D, in which each element (i, j) represents the number of passengers traveling from node i to node j per 

day. Although transport demands are dynamic in nature, the elements of D are calculated for a specific 

period within a day. The demand matrix D for this network is shown in Table 1, which has 16 rows and 

16 columns, with the first column and the first row representing the nodes of the network. It should be 

noted that some elements in the table are zero (0), indicating no passenger demand between i and j. 

However, there are elements with very high demands, such as element a(5,9) or element a(9,5), which 

have a demand of 880 passengers. Thus, the transit network route search problem is defined by the graph 

G and the matrix D, and the solution to the problem is a set of routes (a subgraph of the network), as it 

does not include all edges between nodes. Importantly, the solution must allow reaching all nodes in the 

network. 
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Figure 1: Mandl’s Network (Adapted from Arbex and da-Cunha, 2015) 

Table 1: Demand Matrix (D) between Nodes in Mandl's Network (Adapted from Arbex and da-Cunha, 

2015) 

  0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

 0 0 400 200 60 80 150 75 75 30 160 30 25 35 0 0 

 1 400 0 50 120 20 180 90 90 15 130 20 10 10 5 0 

 2 200 50 0 40 60 180 90 90 15 45 20 10 10 5 0 

 3 60 120 40 0 50 100 50 50 15 240 40 25 10 5 0 

 4 80 20 60 50 0 50 25 25 10 120 20 15 5 0 0 

 5 150 180 180 100 50 0 100 100 30 880 60 15 15 10 0 

 6 75 90 90 50 25 100 0 50 15 440 35 10 10 5 0 

D = 7 75 90 90 50 25 100 50 0 15 440 35 10 10 5 0 

 8 30 15 15 15 10 30 15 15 0 140 20 5 0 0 0 

 9 160 130 45 240 120 880 440 440 140 0 600 250 500 200 0 

 10 30 20 20 40 20 60 35 35 20 600 0 75 95 15 0 

 11 25 10 10 25 15 15 10 10 5 250 75 0 70 0 0 

 12 35 10 10 10 5 15 10 10 0 500 95 70 0 45 0 

 13 0 5 5 5 0 10 5 5 0 200 15 0 45 0 0 

 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Instances of Solution of the Problem 

The solution instances of the problem are feasible solutions that meet all the problem's conditions. Figure 

2 shows three instances as examples. It can be observed that in any instance, one can reach any node. 

Some passengers have direct trips without transfers, as in the case of the passenger traveling from node 

0 to node 6 in instance a), using the green route (0-1-2-5-14-6). Others make trips with one transfer, such 

as the passenger traveling from node 8 to node 7 in instance b), using the dashed black route in the 

segment (8-14) and then the red route for the segment (14-7). And some passengers make trips with two 

transfers, like the passenger traveling from node 4 to 11 in instance c), using the red, green, and brown 

routes. The first transfer is made from the red line to the green line using the segments (4-3, 3-5) on the 

red line, then the green line with segments (5-7, 7-9, and 9-10), and finally, the second transfer is made 

from the green line to the brown line using the segment (10-11). 



Efficient Transit Network Design, Frequency Adjustment, and 

Fleet Calculation using Genetic Algorithms  
Miguel Jiménez-Carrión et al. 

 

31 

   
(a) (b) (c) 

Figure 2: Instances of Feasible Routes, Based on the Mandl Network 

Mathematical Model for Route Design 

The mathematical model has two objectives: to minimize the average passenger travel time (T̅
V

) nd the 

total travel time of all vehicles on the routes (TRV), The constraints ensure the fulfillment of all problem 

conditions. The model grows combinatorially with size 

Function Objective: FO = Minimize(T̅V) + Minimize(TRV); s.a    (1) 

T̅V = P0T̅V0 + P1T̅V1 + P2T̅V2 + ⋯ + PkT̅Vk                                          (2) 

The parameters of the aforementioned equations are observed below:

T̅V,k= (
∑ ∑ Di,j,k

j=n-1

j=0
Ti,j,k

i=n-1
i=0

∑ Di,j,k
i,j=n-1

i,j=0

)     ∀ k = 0, 1, 2, …, k   (3) 

 Pk= (
∑ Di,j,k

i,j=n-1

i,j=0

DT
)                      ∀ k = 0, 1, 2, …, k   (4) 

DT=Di,j,0+Di,j,1+Di,j,2+…+Di,j,k           (5) 

TRV=TR0+TR1+TR2+⋯+TRm        (6) 

TRm= ∑ Xi,j,m
i,j=n-1

i,j=0 Ti,j,m         (7) 

Notation: Symbols and Variables 

n = 15, number of nodes in the network, positive integer 

m = number of routes in the route set, positive integer 

Tij = time in minutes to go from node i to node j, given by the time matrix 

Dijk = number of passengers traveling from node i to node j, using k transfers, k = 0, 1, 2, …, k 

Pk = percentage of passengers traveling with k transfers, k = 0, 1, 2, …, k 

TV,k= average travel time with k transfers, k = 0, 1, 2, …, k 

… = represents continuity from the previous way in the route of the number of transfers (k), k=0, 1, 

2,…, k 

TRV = vehicle travel time on all routes 

T̅V = average travel time on the set of current routes 

DT = total passenger demand between node i and node j 
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Tijk = Travel time from node i to node j with k transfers, k = 0, 1, 2, …, k; determined by finding the 

shortest route using the current route set and 5-minute time increments for each transfer 

Xijk = edge usage of the network from node i to node j on path m; m = 0, 1, 2, …, m, binary variable 

takes the value 1 when used and 0 when not 

Additional Restrictions 

Each node in any route should not repeat to avoid backtracking. An edge can be used more than once in 

the set of routes. Finally, the set of routes must allow reaching any node. These considerations are taken 

into account when designing the route generator. 

Chromosome Design and Adaptive Function 

An individual represents a solution to the problem, and thus, an individual is represented as a list of lists, 

with each inner list containing integers that identify nodes in the network. These nodes are implicitly 

connected, meaning that each pair of nodes has an edge and consequently a distance or time to travel 

between them. The number of nodes in each list, or rather in each route, is variable and is generated 

based on the number of routes, which can range from a minimum to a maximum, and a specific number 

of nodes in the route, which can also vary between a minimum and a maximum number. The instances 

shown above are some examples of individuals in which, in all cases, it is ensured that starting from a 

particular node, all other nodes can be reached through the routes. Additionally, nodes are not repeated 

in the routes to avoid backtracking, and the instance ends up being a subgraph of the original network 

because not all edges of the network are used. 

Quantifying the quality of a set of routes is not straightforward, as there are conflicting objectives, 

as stated by Kiliҫ and Gӧk (2014) when they mention that 'Stakeholders often have conflicting interests.' 

In this algorithm, it is proposed that the quality function is a compromise of three important parameters, 

such as minimizing the total travel time of vehicles to transport the existing passenger demand in 

accordance with the demand matrix 'D,' minimizing the average passenger travel time, and maximizing 

the percentage of passengers with direct transportation without transfers. However, it is necessary to 

consider the movement of passengers through the designed routes. This involves quantifying the 

percentage of passengers who travel directly without making transfers, those passengers who make one 

transfer, two transfers, and more transfers. In this context, it was proposed that evaluating an individual 

should be in harmony with these percentages. Therefore, the quality function was defined as shown in 

the dimensionless equation (8): 

Quality= 
0.9P0 − 0.04P1 − 0.03P2 − 0.02P3 − 0.01P4 − ⋯  0.00Pk

( log(T̅V) + log(TRV) )
    (8) 

Logarithms help minimize the disparity between the average travel time and the travel time of all 

vehicles on all routes, so the denominator favors quality if this sum is small and penalizes it if it's large. 

Furthermore, if there are passengers with one or more transfers, the travel time from i to j increases by 

5-time units for each transfer. This allows for a fair comparison of our algorithm with other proposals, 

ensuring that transfers are also considered in the fitness or quality function. In other words, if a transfer 

from one vehicle to another is necessary to reach the final destination, the travel time increases by 5 

minutes. If two transfers are needed, the time increases by 10 minutes, and so on. This function requires 

determining the travel times for direct trips first, then for one transfer, two transfers, and so on. 

Additionally, the demand of passengers without transfers, with one transfer, with two transfers, etc., 
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must be determined proportionally. This way, the quality of the three previous instances is evaluated as 

follows: 

Instance a: [77.59, 20.87, 1.54] 12.98, 139.0; Quality = 9.196; This indicates that 77.59% of 

passengers travel directly, 20.87% of passengers use one transfer, and the remaining 1.54% make two 

transfers to reach the final destination. The average travel time for passengers from i to j is 12.98 min, 

and the travel time for vehicles on all routes is 139 min. Applying the formula in equation (5), the quality 

is 9.196. The percentages are obtained by determining the transportation costs. 

Instance b: [85.48, 14.07, 0.45] 11.38, 153.0; Quality = 10.232; The second instance indicates that 

85.48% of passengers travel without transfers, 14.07% make one transfer, and 0.45% of passengers make 

2 transfers. The average travel time from i to j is 11.38 min, and the travel time for vehicles on the routes 

is 153 min. The quality of this instance is better than the previous one, at 10.232. Comparing it with the 

previous instance, you can see that the percentage of passengers not using transfers increased from 

77.59% to 85.48%. Additionally, the average cost decreases from 12.98 to 11.38 min, while the travel 

time of vehicles increases from 139 to 153 min. 

Instance c: [61.79, 37.06, 1.16] 13.21, 83.0; Quality = 7.728; In this instance, the percentage of direct 

passengers decreases to 61.79% compared to the previous ones. The percentage of passengers with one 

transfer increases to 37.06%, and the percentage of passengers with two transfers is 1.16%. The average 

travel time increases to 13.21, which is unfavorable for passengers. However, the travel time for buses 

decreases to 83.0. In these conditions, the quality of this individual is quite low, reaching 7.728." 

Improving the Algorithm of the Computational Prototype 

Python programming language was used to implement the required functionality in the genetic algorithm 

and to test different algorithm parameters to ensure its stability. As can be seen in the main genetic 

operators described below, regarding the mechanisms of selection, crossover, and mutation; the selection 

of individuals allows the algorithm to go through all individuals in groups of four. This means that the 

first four are selected, followed by the next four, and so on until the last group of four is reached. This 

necessitates having a population size that is a multiple of four. On each occasion of selection, the one 

with the best fitness is preserved. Then, pairs of individuals are established, such as 0 vs. 1, 1 vs. 2, and 

2 vs. 3. Subsequently, within each pair of individuals, the longest route is identified in order to perform 

the crossover of individuals. This mechanism enables genetic transmission in an aggregated manner by 

exchanging the longest routes between each pair of individuals, resulting in 6 offspring, two per pair. 

The mutation stage of the offspring follows, using a method to reduce the size of the routes, which helps 

maintain diversity and obtain better individuals in each iteration. After mutation, the quality of the 

offspring is evaluated, and the top 3 offspring in terms of quality are selected. Consequently, there are 4 

individuals: the one that was preserved at the beginning and the three selected offspring who then replace 

the 4 individuals initially selected. Figure 3 schematically illustrates these three stages of the algorithm. 

Subsequently, for better clarity, the main functions implemented through pseudocode in the Genetic 

Algorithm are described, such as the generation of individuals, the crossover process, mutation, and the 

evaluation of the population, the output of which is necessary to consistently determine the quality of 

each individual in the population. Here we have the "Generate Initial Population" function: This function 

implements the generation of individuals. It takes as input the population size (TPo) and the matrix of 

times between nodes i and j (mTij), and it provides as output the population of individuals that meet all 

the problem's conditions. It uses a "generate_route" function and then evaluates that route to consider 

routes that have a length greater than 3 nodes. The route generation process doesn't end until all nodes 

are included, and there are no disconnected nodes, as shown in algorithm 1. 
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Quality of Individuals (Parents) 

 Individual 0:      40  

 Individual 1:      50 * The best Individual is preserved 

 Individual 2:      30  

 Individual 3:     10  

Cross of Individuals  offspring mutation             Quality 

offspring 1  offspring 1                            30 

Individual 0 vs Individual 1   

offspring 2  offspring 2                            60 

   

offspring 3  offspring 3                            40 

Individual 1 vs Individual 2   

offspring 4  offspring 4                            30 

   

offspring 5  offspring 5                            45 

Individual 2 vs Individual 3   

offspring 6  offspring 6                            30 

                                      New Individuals replacing parents                     Quality 

                                       Individual 1:       * selected at start                         50 

Individual 2          from the offspring 2                   60 

Individual 3:         from the offspring 3                   40 

Individual 4:         from the offspring 5                   45 

Figure 3: Diagram of the Stages of Selection, Crossing and Mutation of the AG 

 

Algorithm 1: Pseudocode that Generates the Initial Population of Individuals 

Aggregated Individual Crossover: This operator performs the crossover between two individuals. It 

takes a pair of individuals as input. What's innovative about its genetic transmission functions is that it 

operates by selecting the longest route in each individual. In other words, it focuses on the network's 

connectivity when crossing individuals with greater geographical reach and a higher demand, 

minimizing the number of transfers. This results in an exchange of genetic information in an aggregated 

manner. The output of the function is two new individuals that contain genes from the other individual 

(see algorithm 2). 

Function: Generate Initial Population 

     Input: tpo: Population Size, 

               mtij: Travel Time Matrix 

     Output: Initial Population (poi) 

1: poi ← initialize Initial Population 

2: v ← initialize Individual 

3: for k=0 to tpo do: 

4:           repeat 

5:                  route = generate_route 

6:                  if length(route) > 3 then: 

7:                         add route to v 

8:          until visited nodes = 15 

9:          append v to poi 

10: return poi 
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Algorithm 2: Pseudocode that Crosses Two Individuals in an Aggregate Way 

Pruning Mutation: This operator changes the genetic structure, and its main function is to take an 

individual as input and return a mutated individual. The procedure involves selecting the route Indiv[0] 

from the individual and iterating through all the nodes of this initial route. During the iteration, the 

algorithm searches for the node in the rest of the routes with the condition that if it finds the node at 

position zero (0) or at the last position of any route, it removes the node where it was found. The 

functionality of this operator is to prune (generate a pruning) so that the result consists of individuals 

with strictly defined routes, avoiding the repetition of sections and minimizing the overall costs of the 

entire network. Additionally, another optimization function of this operator is to check for disconnected 

nodes, adding optimization value to the operator. This process is expressed in the pseudocode shown in 

algorithm 3. 

 

Algorithm 3: Pseudocode that Modifies an Individual's Chromosome 

Evaluate Population: This function is responsible for decoding the chromosome of each individual 

in the population into alleles, which are expressed in terms of the percentage of travelers who have direct 

trips, i.e., without transfers, the percentage of travelers who travel with one transfer, the percentage of 

travelers who make two transfers, the percentage of travelers who make three transfers, four transfers, 

and/or k transfers. It is necessary to note that the sum of the percentages must be 100%. Additionally, 

the decoding determines the average travel time for the entire population, denoted as ₸V. Finally, the 

function also determines the total travel time of all vehicles on all routes, known as TRV. This function 

returns, for each individual, an array [[P0, P1, P2, …, Pk], ₸V, TRV], representing the percentages of 

travelers with 0, 1, 2, …, k transfers, the average travel time, and the total travel time of all vehicles in 

the evaluated set of routes for each individual, as shown in Figure. There is an issue in this function 

between the percentages P0 and P1. When there are equal traveled pairs of nodes between direct trips 

without transfers and with one transfer, the algorithm does not prioritize direct trips. The same issue 

occurs between trips with one transfer and trips with two transfers. In this case, it should prioritize trips 

Function: Crossover Individuals 

     Input: indiv1, indiv2 

     Output: newindiv1, newindiv2 

1: first_route ← argmax(length(route)), route ∈ indiv1 

2: second_route ← argmax(length(route)), route ∈ indiv2 

3: newindiv1 ←append second_route to indiv1 

4: newindiv2 ←append first_route to indiv2 

5: return newindiv1, newindiv2 

1: Procedure: Mutation 

2: Input: indiv 

3: Output: indivm 

4: indiv_evaluated ← indiv[0] 

5: for each node in indiv_evaluated: 

6:     for each evaluated_route in indiv_evaluated: 

7:         if node exists in endpoints of evaluated_route 

8:             and there are no disconnected nodes then 

9:             indiv_evaluated ← remove node from indiv_evaluated 

10:         end 

11:     end 

12: indvm ← indiv_evaluated 

13: return indivm 



Efficient Transit Network Design, Frequency Adjustment, and 

Fleet Calculation using Genetic Algorithms  
Miguel Jiménez-Carrión et al. 

 

36 

with one transfer. This situation has been corrected as an improvement to avoid re-evaluating each 

individual until the best solution is found, which occurred with the algorithm in the previous proposed 

version. 

 

Algorithm 4: Pseudocode that Decodes the Chromosome of Each Individual 

Fitness: A function that assesses the fitness of each individual. It takes as input the output of the 

Evaluate Population function and returns the fitness of each individual in the population according to 

equation (5), as shown in algorithm 5. 

 

Algorithm 5: Pseudocode that Returns the Quality of Each Individual 

Improved Algorithm Stability 

According to the factorial design outlined in the methodology: Number of generations (NG) with (50, 

100, and 150), Population size (TPo) with (60, 120, and 180), the results are summarized in the analysis 

of variance Table 2, which shows that the TPo factor has a highly significant influence on the quality of 

the genetic algorithm individuals, while the NG factor is indifferent. This is because the algorithm's 

evolution manages to find very good individuals in fewer than 50 generations, with the exception of the 

NG=100, TPo=120 interaction, where in the first repetition, the optimal value was reached in generation 

84, as shown in Table 3. This table reflects the NG at which the quality remains constant until the end 

of all generations. Additionally, the coefficient of variability is very small at 0.0978%, indicating that 

Function: Evaluate Population 

     Input: poi, mtij, mdemanda 

     Output: evalua_poi 

1: evalua_poi ← initialize as zero 

2: for each route in poi: 

3:     mc ← costMatrix(route, preferences), for n transfers with n = 0,1,2,3,4,5 

4:     md ← demandMatrix(route), for n transfers with n = 0,1,2,3,4,5 

5:     mp ← userPercentageMatrix(route, mc, md), for n transfers with n = 

0,1,2,3,4,5 

6:     ₸V ← Average cost per trip(mp, mc, md) 

7:     TRV ← Total travel cost across all routes(mc, md) 

8:     append (mp, ₸V, TRV) to evalua_poi 

9: end 

10: return evalua_poi 

Function: Quality 

     Input: evalua_poi 

     Output: Population quality 

1: weights ← fixed weights per metric 

2: quality_poi ← empty list 

3: for each indiv in evalua_poi: 

4: (mp, ₸V, TRV) ← indiv 

5: quality ← mp(0) * weights(0) 

6: for k=1 to length(weights): 

7:      quality ← quality - mp(k)*weights(k) 

8:      quality ← quality / (log(₸V) + log(TRV)) 

9:      append quality to quality_poi 

10: end 

11: return quality 
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the genetic algorithm is very precise in its results. To determine the best level of the TPo factor, the 

Duncan test was conducted with a coefficient of 0.05, revealing that, on average, the levels of 120 and 

180 individuals statistically perform the same, with quality values of 11.27075 and 11.29442, 

respectively. In contrast, the level of 60 individuals has a lower average quality of 11.06750. 

Numerically, the best average was found with a population size of 180 individuals, which has an average 

quality of 11.29442. 

Table 2: Analysis of Variance of the 2x3 Factorial Design for the AG 

Factors GL SC CM Fc SIG 

Treatments 8 0.390387056    

NG 2 0.004833389 0.00241669 0.22052  

TPo 2 0.366042389 0.18302119 16.70019 ** 

NG x TPo 4 0.019511278 0.00487782 0.44509  

ERROR 27 0.295899250 0.01095923   

TOTAL 35 0.686286306    

Table 3: Pair (NG, Quality), from which the Quality does not Change 

NG TPo I II III IV 

50 60 (13, 11.164) (23, 11.048) (45, 11.032) (34, 10.978) 

50 120 (22, 11.213) (16, 11.275) (36, 11.248) (32, 11.330) 

50 180 (32, 11.376) (25, 11.190) (43, 11.238) (21, 11.235) 

100 60 (09, 11.151) (35, 11.160) (44, 10.850) (16, 11.255) 

100 120 (84, 11.348) (36, 11.333) (36, 11.243) (22, 11.137) 

100 180 (21, 11.112) (27, 11.392) (18, 11.264) (32, 11.317) 

150 60 (17, 11.170) (23, 10.970) (16, 11.173) (16, 10.859) 

150 120 23, 11.237) (21, 11.360) (41, 11.233) (34, 11.292) 

150 180 (29, 11.359) (31, 11.340) (38, 11.286) (21, 11.379) 

Regarding the random generation of individuals in the Genetic Algorithm (GA), it has been found 

that the size of each individual can vary from 3, 4, 5, 10, 15, 20, 25, up to 28 routes. This variability is 

due to the fact that an individual is considered complete when all constraints are met, meaning that nodes 

are not repeated within the same route, and the generation process does not stop until all nodes are 

connected. During the evaluation of each individual's quality, an initial output is determined based on 

transfer percentages, ₸V, and TRV, and quality is then calculated from this information. 

During calibration tests of the route generation algorithm, it was observed that it consistently delivers 

highly satisfactory sets of routes. This is reflected in the high percentage of passengers traveling without 

transfers, and even when transfers are required, the percentage is very low. Additionally, the average 

travel time per passenger is minimized, as is the total travel time for all vehicles on all routes in the set. 

This means that if the algorithm's response is a set of 3 routes, these routes are highly satisfactory. 

Similarly, if it delivers a set of 4, 5, 6, 7, or 8 routes, they are also highly satisfactory. The algorithm has 

been optimized to prioritize routes without transfers as the first option, followed by routes with 1 

transfer, and only if the result warrants it, routes with 2 transfers are considered. 

Finally, an instance of the evolution of individuals regarding their quality across all generations is 

shown in Figure 4. It's important to note that the average execution time of the algorithm is 35 minutes. 

The quality of each individual is considered adimensional because it is the result of dividing the 

percentage of trips with 0, 1, 2, ..., k transfers by the sum of the logarithms of the average travel time 

and the logarithm of the total travel time of all buses, with time units in minutes. 
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Figure 4: Behavior of the Quality of an Individual During the Evolution 

Construction of the Second Phase Algorithm 

This algorithm consists of two parts: the calculation of frequencies and the determination of the fleet. In 

the first part, the demand for each route is determined, and in the second part, the frequency for each 

route and the calculation of the necessary fleet are determined, both for the routes designed in the first 

phase. 

The first part involves establishing an efficient distribution of demand for the set of routes of the 

optimal individual selected in the first phase. This calculation starts by distributing the demands that 

involve transfers, whether it's 1, 2, or more transfers, equitably among each route in the set of routes. 

For example, if the demand from node "i" to node "j" is 300 passengers and the journey includes one 

transfer because two routes are involved, then the demand is divided into 150 for the first route and 150 

for the second route. Conversely, if the demand from "i" to "j" involves 3 routes, indicating two transfers, 

then the demand of 300 passengers is divided equally among the three routes, with 100 passengers for 

each route. After establishing the demands to be distributed among routes with transfers, these demands 

are inserted into node pairs that are part of the direct travel routes in the demand matrix. However, before 

insertion, it's checked how many times that node pair appears in the set of routes to distribute the demand 

evenly. This verification is done for each route in the individual's set of routes. 

After determining the demand for different node pairs (i, j) or segments (i, j) for all trips with 

transfers, the original demand matrix is modified by adding the demand from the segments with 

transfers. Then, the demand is assigned to the routes in the individual's set. The demand assignment to 

the routes in the individual's set starts with the modified demand, and similarly, the number of times 

each node pair (i, j) or segment (i, j) appears in the individual's set of routes is checked to distribute the 

demand equally among all segments. Then, the demand distributed in each route is assigned as shown 

in the pseudocode in algorithm 6. 
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Algorithm 6: Assignment of the Demand to the Routes of the Individual Route Set 

The second part of the allocation algorithm determines the frequency using the formula proposed by 

Ceder (1987), as reported by Arbex and da-Cunha (2015). This calculation is performed to ensure that 

the occupancy of buses does not exceed the most congested segment of the route in terms of vehicle 

occupancy. Occupancy is determined using an occupancy factor representing the proportion of standing 

passengers, calculated as the total number of passengers divided by the number of seats. The expression 

that provides the frequency calculation is given by equation (6). 

Frecuency = 
𝑄max

(load factor) x (bus capacity)
    (9) 

Where: 

• Qmax: maximum load per section of each route in the set of routes 

• load factor: it is the parameter established for the estimation of additional load (standing 

passengers), in this article it is considered 1.25 (additional 25% of passengers), identical to other 

articles 

• Bus capacity: It is the standard load of (seats), in this article it is considered 40, equal to other 

articles. 

To calculate Q_max, the modified demand from the first part of the allocation algorithm is used. An 

exhaustive combinatorial analysis of all segments or node pairs obtained from the individual's set of 

routes was performed. This allowed for the determination of the demand for each segment in each route 

and for the entire set of routes. Q_max is determined for each route by summing all the accumulated 

demand for each segment. From all the accumulated demands, the highest demand for each route is 

selected. Once Q_max is obtained, equation 6 is applied to determine the frequency of each route. 

Consequently, the travel time for each route in the set of routes is evaluated. Finally, the required fleet 

for each route is calculated according to the formula in equation 7, as proposed by Capali and Ceylan 

(2020). The total fleet for the set of routes is determined as the sum of the fleets for each route, 

Algorithm: Demand Distribution 

  Input: Set of Individual Routes 

  Output: Total Demand per Route 

  1: Individual ← Routes i, j + Routes j, i 

  2: Total Segments of Individual ← Individual (combination, 2) 

  3: For i from 0 to Number of nodes do 

  4:     For j from 0 to Number of nodes do 

  5:          If route cost and number of transfers ≥ 1 then 

  6:    Routes with Transfer ← Shortest Path Algorithm (i, j) 

  7:    For Routes with Transfer from 0 to number of routes with transfer do  

  8:          Number of Routes for Transfer ← number of transfers + 1 

  9:          Demand of Segments with Transfer ← (Demand with transfer (i, j) / Number of Routes for Transfer 

10:    end For 

11:          end If 

12:      end For 

13: end For 

14:  

15: Demand Matrix (i, j) ← Original Demand Matrix + Demand of Segments with Transfer 

16: If a segment occurs in every route > 1 then 

17:      Demand ← Demand / number of times the segment repeats  

18: end If 

19: For a from 0 to length of the route do 

20:      Total Demand of the route ← Demand of each node combination 

21: end For 

22: Output: Total Demand per Route 
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considering both the outbound and return trips. The pseudocode in algorithm 7 shows the calculation 

process. 

Fleet = 
Frecuency ∗ route cost 

60
    (7) 

 

Algorithm 7: Assignment of the Demand to the Routes of the Individual Route Set 

3 Analysis and Discussion 

Both the algorithms of the first phase used in the development of the computational prototype for route 

design and the algorithms of the second phase used for demand allocation and bus frequency to routes, 

as well as the calculation of the bus fleet, were implemented using Python and tested on the Swiss road 

network of Mandl, 1979. This network has 15 nodes and 21 edges, with a total network demand of 

15,570. While the proposed algorithm is validated on the Swiss road network, as it is a reference in the 

literature, our proposal achieves better results in 90.70% of comparisons, with similar results in the 

remaining cases, and our proposal consistently performs with a shorter algorithm execution time. 

Furthermore, even though the reference network is quite small compared to the networks in various 

cities worldwide, our algorithm will always respond adequately because it has a route generation 

procedure that complies with all constraints of the mathematical model. After calibrating the route 

generation algorithm and determining the best parameters, including characterizing the objective 

function structure and the behavior of genetic operators, specifically for these latter elements of the 

algorithm, they undergo thorough processing for the entire population generated from the first iteration. 

This is because their exploratory behavior captures the best characteristics of each individual from the 

inception of the solution search space. Therefore, at the end of the algorithm, individuals have gathered 

the best genetic information from the outset of processing. 

We conducted 120 executions of the genetic algorithm, resulting in multiple efficient solutions: 3 

routes with three segments, 17 routes with four segments, 17 routes with five segments, 33 routes with 

six segments, 33 routes with seven segments, and 17 routes with eight segments. All of these solutions 

showed remarkable efficiency, with a coefficient of variation of quality with respect to the mean of only 

 

Algorithm: Frequency and Fleet Determination 

  Input: Demand, Individual 

  Output: Frequency, Fleet 

  1: For routes from 0 to length of Individual do 

  2:       Demand per segment of each route ← demand for each node pair per route in Demand 

  3: end For 

  4: Maximum Load ← Maximum (Demand per segment of each route) 

  5: Frequency ← Maximum Load / (load factor * Bus Capacity) 

  6: Output: Frequency 

  8: 

  9: For route from 0 to length of Individual do 

10:       For elements in route from 0 to length of route - 1 do 

11:             Route Cost ← sum of costs of node pairs per route 

12:    Route Fleet ← (Frequency * Route Cost) / 60 

13:       end For 

14:  end For 

15: Fleet = sum (Route Fleet) 

16: Output: Fleet 
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0.0978%. It is important to clarify that in Tables 4 and 5, results from other authors are shaded in gray, 

while unshaded results are obtained with our algorithm based on the routes presented by those authors 

for the purpose of fair and comprehensive evaluation. Therefore, these tables contain the results of our 

proposal. Table 4 analyzes and discusses solutions with 3, 4, 5, and 6 routes, while Table 5 deals with 

solutions of 7 and 8 routes. In both tables, both phases are integrated, and comparisons are made with 

all proposals from the literature. 

Comparing our results with those of Fan and Mumford (2010) for 4, 6, 7, and 8 routes, it can be 

observed that in the solutions with 6, 7, and 8 routes, our algorithm outperforms them in all evaluated 

parameters, including fleet size. However, when comparing the 4-route solution, the percentages of 

direct and one-transfer trips are slightly lower in our algorithm. Still, ₸V (average travel time per 

passenger) is better in our algorithm at 10.86 minutes compared to 11.37 minutes, and the TRV (Total 

Route Length) is also better in our algorithm at 117 minutes compared to 147 minutes. Therefore, the 

quality is also superior. Similarly, the fleet size is much better in our algorithm, with a value of 78 buses, 

while the authors' proposal requires 103 buses. When Asadi-Bagloee and Ceder (2011) report their 

results, they only present results for 12 routes, which is why it is not reported in Table 4. In terms of our 

algorithm, they report the following: [[9,7,5,2,1,0], [9,6,14,8], [6,14,5,2,1], [6,14,5,3,4], [0,1,2,5,7,9,13], 

[12,9,7,5,2,1,0], [11,10,9,6], [10,9,7,5,2,1,0], [8,14,6,9,12], [3,5,7,9,10], [10,9,7,5,3,4], [9,10,11]]. They 

also report that 83.66% of passengers travel directly without transfers, 15.21% use one transfer, 0.95% 

use two transfers, and there is an unsatisfied demand of 0.18%. They also report a fleet size of 87 buses 

for the 12 proposed routes, with an ₸V of 11.52 and TRV of 261. Comparing these results with our route 

generator, there is a significant gap, as our algorithm achieves 96.15% direct passenger trips, with only 

3.85% using one transfer, completely satisfying the demand. Additionally, our parameters ₸V=10.38 and 

TRV=191 are better than those of the authors. Furthermore, the fleet size in their proposal is 87 buses, 

which is higher compared to our proposal of 78 buses. Cipriani et al. (2012) are not analyzed because 

they do not validate their proposal on the Mandl network. 

Regarding the results presented by Nikolić and Teodorović (2013), firstly, they do not provide 

solutions with three routes, whereas our genetic algorithm efficiently does so. For solutions with 6, 7, 

and 8 routes, their algorithm has slightly better percentages of direct trips without transfers, such as 

95.63%, 98.52%, and 98.97%, compared to ours, which are 94.67%, 96.15%, and 95.70%. The 

difference corresponds to trips with one transfer. However, in terms of ₸V, they achieve 10.23, 10.15, 

and 10.09 minutes, respectively, compared to our genetic algorithm with ₸V of 10.42, 10.38, and 10.49 

minutes. This apparent disadvantage of our algorithm is greatly compensated for by TRV. Our algorithm 

has lower total travel times in all solutions, with values of 183, 191, and 195 minutes, whereas they 

report 224, 247, and 288 minutes, respectively. As a result, the quality of our solutions is superior to 

those presented by them. Regarding fleet size, although they do not report this parameter for solutions 

with 6, 7, and 8 routes, when we evaluate their routes with our algorithm, we obtain fleet sizes of 94, 

90, and 106 buses for the respective solutions. These values are higher than those provided by our 

algorithm, which obtains 72, 78, and 74 buses for the same solutions, as shown in Table 4. As for the 4-

route solution, their reported results in Table 4 do not correspond. Instead, the correct values should be: 

88.76% direct trips, 10.15% with one transfer, 1.09% with two transfers, ₸V=10.79 minutes, and 

TRV=146 minutes, with a quality of 10.791. These results were obtained from the routes 

[[0,1,2,5,7,9,10,11], [1,4,3,5,7,9,12,10], [8,14,6,9,7,5,3,11], [3,1,2,5,14,6,9, 13]], compared to our 

results of 92.94% direct trips, 7.06% with one transfer, ₸V=10.86 minutes, TRV=117 minutes, and a 

quality of 11.664. Our results are better than theirs, and our algorithm requires 89 buses, while theirs 

requires 78 buses, making it a more efficient solution. It is worth noting that the authors attempt to 
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achieve a lower ₸V in route sets by incurring a high TRV or increased travel time for all vehicles on all 

routes, which affects the number of buses required. 

The results presented by Kiliҫ and Gӧk (2014) are based on an algorithm that uses Tabu Search as a 

metaheuristic and Simulated Annealing as part of the solution. In Table 4, the best results of their 

algorithm are shown, indicating that they do not provide solutions for 3 routes, and the solutions they 

provide for 4 routes are inferior in all parameters compared to our genetic algorithm, except for ₸V, 

where they achieve ₸V=10.56 minutes, and our algorithm achieves ₸V=10.86 minutes. However, they 

have a TRV=148 minutes in their algorithm compared to our TRV=117 minutes, resulting in a better-

quality solution in our case. As for the solutions with 6, 7, and 8 routes, they achieve slightly better 

results than our genetic algorithm, except for TRV, where our algorithm reports lower travel times, such 

as 183, 191, and 195 minutes compared to their 212, 250, and 272 minutes, respectively. This makes the 

quality of our solutions superior. Regarding fleet size, they do not report this parameter, but we 

calculated it based on the routes they show, resulting in fleet sizes of 102, 98, 100, and 97 buses for 

solutions with 4, 6, 7, and 8 routes, respectively. In comparison, our algorithm requires 78, 72, 78, and 

74 buses for the same solutions, as shown in Table 4. 

While Mahdi-Amiripour et al. (2015) proposed a practical method based on genetic algorithms to 

solve the bus network design problem and achieved good results, when they test their algorithm on the 

Mandl's Swiss Road network, they only report results for 4 routes: [[6,14,5,2,1,3,11], [11,10,9,6,14], 

[0,1,2,5,14,6,9], [4,3,5,7,9,13,12,10]]. This solution led to the following result: 79.38% of passengers 

travel directly without transfers, 20.62% make one transfer, but they do not report ₸V or TRV. They do 

report a fleet size of 66.95 buses for this 4-route solution. In this case, the missing values were obtained 

using their known routes and our algorithm, resulting in the following values: ₸V = 11.19 minutes and 

TRV = 104 minutes. Compared to our genetic algorithm, their solution falls significantly short, as our 

generator achieves 92.94% of passengers traveling directly without transfers and only 7.06% using one 

transfer. ₸V is 10.86 minutes, and TRV is 117 minutes, resulting in a higher quality of 11.664. Our 

algorithm also requires 80 buses, which is unusual compared to their reported fleet size. 

The results of extensive computational experiments by Arbex and da-Cunha (2015) are reported 

using both the original Mandl reference set and instances with different demands and travel times to 

determine Pareto fronts of optimal solutions since user and operator costs are conflicting objectives. 

However, their reports are incomplete in Table 4 because they do not report TRV or the route solutions. 

This is unfortunate because if the route solutions existed, we could have reconstructed all the parameters. 

In this case, we can only comment that, as per their statements, our route generator using genetic 

algorithms achieves lower average travel times in all solutions. For example, we have ₸V values of 10.86, 

10.72, 10.42, and 10.38 minutes for their respective 4, 6, 7, and 8-route solutions, while they report 

10.23, 10.15, 10.09, and 10.26 minutes. However, our algorithm reports much lower TRV values for the 

same solutions, such as 183, 191, 195, and 194 minutes, compared to their 224, 247, 288, and 257 

minutes. As a result, the quality of our solutions is superior. Regarding fleet size, they do not report it 

for these solutions, which limits the comparison. 

The best results from the application of two mixed-integer linear programming models proposed by 

Cancela et al. (2015) cannot be reported in Table 4 because they propose solutions with 20 routes in 

Model I and 12 routes in Model II. The same applies to their comparative part with Asadi-Bagloee and 

Ceder (2011), where their solution also corresponds to a set of 12 routes. However, we can discuss these 

solutions by showing the routes they provide. For 20 routes: [[9,10], [9,13,12,10], [9,10,12], [9,10,11], 

[9,13,12,10,11], [9,10,12,13], [0,1,2,5,7,9], [0,1,2,5,14,6,9], [8,14,6,9], [1,3,5,7,9], [4,3,5,7,9], 

[4,1,2,5,7,9], [4,3,1,2,5,7,9], [10,9,13,12], [1,2,5,14,6], [0,1,3,4], [0,1,2,5,7,14,6], [0,1,2,5,7,9,6], 
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[11,10,12], [11,10,9,13,12]]. For 12 routes: [[9,10,12], [3,5,7,9], [0,1,2,5,7,9], [0,1,2,5,14,6,9], 

[8,14,6,9], [4,3,5,7,9], [4,3,1,2,5,7,9], [10,9,13,12], [0,1,3,4], [0,1,2,5,14,6], [11,10,12], 

[11,10,9,13,12]]. Their 20-route solutions provide the following results: [90.37%, 9.31%, 0.32%], 10.74, 

354, quality=9.82, while their 12-route solutions yield: [89.53%, 9.96%, 0.51%], 10.83, 217, 

quality=10.327. Their comparative 12-route solution shows: [86.90%, 12.52%, 0.58%], 11.52, 261, 

quality=9.701. All three of these proposed solutions are dominated by the best solution from our 

algorithm in all its parameters, as shown by [95.89%, 4.11%], 10.38, 191, quality=11.345. It's worth 

highlighting that the authors' proposal has users making up to 2 transfers, while our solution has 95.89% 

of travelers making direct trips, with only 4.11% needing to make a single transfer. Our solution also 

achieves a lower average travel time per passenger of 10.32 minutes and a lower total route travel time 

of 191 minutes, resulting in a significantly better-quality solution. Regarding the number of buses, our 

algorithm indicates that Cancela et al. (2015) would require 64 and 62 buses for their 20-route and 12-

route solutions, respectively, while their comparative solution would require 61 buses. This can be 

explained by the fact that, when multiple routes exist in a solution, the maximum load (Qmax) traveling 

on the routes is diluted or reduced due to multiple travel alternatives and repeated sections. As a 

consequence of this decrease in Qmax, the fleet size becomes smaller, and as a result, the travel time of 

the buses on all routes is much longer. For example, in the case of 8 routes from our algorithm, with a 

travel time of 195 minutes, the 20-route proposal's travel time increases to 354 minutes, equivalent to 

an 81.54% increase. 

Table 4: Report of the Comparison of Algorithm Results of 11 Proposals on Route Design in the Swiss 

Road Reference Network of Mandl 

Authors Number of routes Fleet Percentage (%) ₸V TRV Quality 

d/f 1 2 3 4 5 6 7 8 P0 P1 P2 

Proposal dem. 5468 5583 4529 - - - - - 96 93.13 6.81 0.06 10.93 125 11.571 

frec. 23 25 18 - - - - - 

11 dem. 7354 4284 3988 - - - - - 124 93.67 5.43 0.90 10.50 150 11.4 

frec. 34 19 18 - - - - - 

Proposal dem. 6106 2364 2706 4394 
    

78 92.94 7.06 0 10.86 117 11.664 

frec. 24 13 14 26 
    

1 dem. 4252 3926 3642 3755 
    

103 93.26 6.74 0 11.37 147 11.268 

frec. 26 16 17 23 
    

2 dem. 5248 4542 2686 3120 
    

89 92.10 7.19 0.71 10.51 146 10.791 

frec. 23 20 14 15 
    

3 dem. 4488 4574 4759 1829 
    

102 91.33 8.16 0.51 10.56 137 11.245 

frec. 21 29 22 11 
    

4 dem. 2236 2630 3025 7678 
    

80 79.38 20.62 0 11.19 104 10.0 

frec. 13 14 21 40 
    

5 - - - - - 
    

79 98.27 1.73 0 11.13 - - 

- - - - - 
    

6 - - - - - 
    

40 92.29 7.71 0 15.67 91 11.4 

- - - - - 
    

7 - - - - - 
    

- 91.84 8.15 0 10.48 148 11.2 

- - - - - 
    

8 dem. 4033 4948 3232 3357 
    

92 92.23 7.71 0.02 10.84 151 11.2 

frec. 19 22 20 21 
    

9 - - - - - 
    

- 91.07 8.22 0.71 10.56 124 - 

- - - - - 
    

10 dem. 2915 3183 5816 3657 
    

86 91.52 7.77 0.71 10.54 143 - 

frec. 17 18 24 15 
    

11 dem. 3973 4298 3800 3499 
    

97 91.84 8.16 0 10.48 148 11.2 

frec. 16 21 21 21 
    

Proposal dem. 4959 1240 3175 4003 2193       72 93.38 6.62 0 10.72 141 11.444 

frec. 24 7 16 18 12 
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11 dem. 4374 3709 4141 2295 1052 
   

82 94.73 5.14 0.13 10.31 180 11.3 

frec. 16 18 19 12 4 
   

Proposal dem. 2979 3424 1571 3752 2673 1171     72 94.67 5.33 0 10.42 183 11.252 

frec. 11 18 9 19 11 8 
  

1 dem. 2947 3125 831 4453 1778 2437 
  

94 91.52 8.48 0 10.48 215 10.6 

frec. 15 15 4 23 8 12 
  

2 dem. 3349 3227 2739 3175 2050 1030 
  

94 95.63 4.37 0 10.23 224 11.1 

frec. 14 17 15 17 11 6 
  

3 dem. 870 3479 591 3024 2591 5016 
  

98 95.50 4.50 0 10.29 216 11.1 

frec. 5 14 3 20 15 18 
  

5 - - - - - - - 
  

77 98.20 1.80 0 11.55 - - 

- - - - - - - 
  

6 - - - - - - - 
  

70 84.77 15.23 0 11.38 112 10.6 

- - - - - - - 
  

7 - - - - - - - 
  

- 97.17 2.82 0 10.18 212 11.4 

- - - - - - - 
  

8 dem. 2563 1166 2135 2805 4223 2678 
  

90 94.93 5.07 0.02 10.84 151 11.2 

frec. 16 7 11 15 21 17 
  

9 - - - - - - - 
  

- 96.92 3.08 0.00 10.19 195 - 

- - - - - - - 
  

10 dem. 3075 3390 3632 2485 2051 942 
  

96 96.27 3.60 0.13 10.22 230 10.9 

frec. 15 16 14 16 10 4 
  

11 dem. 3667 2636 2812 1495 2302 2659 
  

100 97.17 2.83 0.00 10.18 220 11.3 

frec. 16 13 15 9 12 16     

The comparative analysis of our route generator against Owais and Osman (2018), even though they 

do not show the routes, is presented in Table 4. It can be observed that, in all cases of 4, 6, 7, and 8 

routes, the percentages of passengers traveling directly without transfers are better in our route generator. 

The average cost of travel per passenger (₸V) is much lower in our route generator. However, the TRV 

parameter is better in all cases for the authors' proposal, indicating that their objective is to favor 

operators by reducing the cost of vehicle travel, at the expense of the average cost per passenger, and 

they do not emphasize maximizing direct passenger transfers. Nevertheless, the qualities of the solutions 

are always better in our route generator, as our quality function equally weights ₸V and TRV. In the 

comparative analysis related to fleet size, they report that for solutions with 4, 6, 7, and 8 routes, the 

required fleet sizes are 40, 70, 88, and 95 buses, respectively. Based on Table 4, we can only say that 

they achieve better results in the 4 and 6-route solutions, while our results are better for the 7 and 8-route 

solutions. However, it is strange that they report a fleet requirement of only 40 buses for the 4-route 

solution. 

Table 5: Report of the Comparison of Algorithm Results of 11 Proposals on Route Design in the Swiss 

Road Reference Network of Mandl 

Authors Number of routes Fleet Percentage (%) ₸V TRV Quality 

d/f 1 2 3 4 5 6 7 8 9 P0 P1 P2 

Proposal dem. 1813 3463 924 4282 670 1932 2486     78 96.15 3.85 0 10.38 191 11.4 

frec. 9.8 18.8 5.6 14.9 3.7 13.6 12.9 
  

1 dem. 2348 2104 683 2586 2090 1420 4338 
  

96 93.32 6.36 0.32 10.42 231 10.8 

frec. 11.4 10.1 3.86 14.8 11.7 11.8 23.3 
  

2 dem. 2787 2842 2384 2857 2669 1153 879 
  

90 98.52 1.48 0 10.15 247 11.3 

frec. 11.1 15.2 13.1 13.9 13.4 6.07 3.64 
  

3 dem. 1894 1582 2592 1932 2932 2568 2080 
  

100 97.04 2.83 0.13 10.23 274 11.0 

frec. 9.8 7.7 11.4 8.3 16.3 9.6 14.5 
  

5 - - - - - - - - 
  

77 98.52 1.48 0 11.91 - - 

- - - - - - - - 
  

6 - - - - - - - - 
  

88 89.21 11.79 0 11.25 125 11.0 

- - - - - - - - 
  

7 - - - - - - - - 
  

- 98.84 1.15 0 10.10 250 11.3 

- - - - - - - - 
  

8 dem. 3482 1879 2465 723 2381 1852 2789 
  

84 93.38 6.62 0 10.62 237 10.7 

frec. 20.0 8.4 16.6 3.8 11.0 10.5 12.9 
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9 - - - - - - - - 
  

- 97.43 2.57 0 10.15 209 - 

- - - - - - - - 
  

10 dem. 2997 2572 916 2853 2458 831 2764 
  

106 98.01 1.99 0 10.1 246 11.3 

frec. 12.0 13.5 6.1 14.6 14.5 4.8 17.9 
  

11 dem. 3511 2522 2728 1350 2109 804 2547 
  

104 98.97 1.03 0 10.1 259 11.3 

frec. 15.3 12.6 14.8 7.7 11.4 4.5 15.9 
  

Proposal dem. 2278 1883 3630 425 503 2581 3841 429   74 95.70 4.3 0 10.49 195 11.3 

frec. 13.3 9.7 14.5 3.6 5.0 13.2 14.2 2.2 
 

1 dem. 1551 3324 1430 1280 832 1856 2080 3223 
 

106 94.54 5.46 0 10.36 283 10.6 

frec. 11.3 15.6 11.3 7.1 5.1 11.3 11.8 13.0 
 

2 dem. 3110 1304 2415 2497 528 2098 2675 941 
 

106 98.97 1.03 0 10.09 288 11.2 

frec. 13.2 7.7 14.6 11.4 3.4 14.2 15.1 4.9 
 

3 dem. 2157 2243 2161 2887 2835 1760 1066 461 
 

97 97.37 2.63 0 10.20 298 10.9 

frec. 10.0 9.4 16.6 15.0 10.3 9.6 5.2 2.8 
 

5 - - - - - - - - - 
 

74 98.65 1.35 0 11.24 - - 

- - - - - - - - - 
 

6 - - - - - - - - - 
 

95 90.68 9.32 0 11.35 154 10.9 

- - - - - - - - - 
 

7 - - - - - - - - - 
 

- 99.16 0.83 0 10.08 272 11.0 

- - - - - - - - - 
 

8 dem. 1418 164 3700 1079 2719 2255 979 3256 
 

89 94.54 5.46 0 10.32 251 10.8 

frec. 7.1 0.9 16.7 7.0 19.6 15.2 5.7 18.4 
 

9 - - - - - - - - - 
 

- 98.59 1.41 0 10.09 233 - 

- - - - - - - - - 
 

10 dem. 2642 2275 3123 872 2167 2315 1605 572 
 

101 98.97 1.03 0 10.08 280 11.2 

frec. 12.7 10.9 12.5 5.8 15.6 13.7 8.2 3.4 
 

11 dem. 3024 2003 2260 1702 1664 762 2127 2028 
 

100 99.23 0.77 0 10.07 302 11.1 

frec. 11.3 9.6 10.1 9.2 9.3 4.2 12.6 12.5   

In Tables 4 and 5, the results of 11 proposals from 2010 to 2021 are reported, in addition to our 

proposal, in the following order: 1) Fan and Mumford (2010), 2) Nicolić and Teodorović (2013), 3) Kiliҫ 

and Gӧk (2014), 4) Mahdi-Amiripour et al. (2015), 5) Arbex and da-Cunha (2015), 6) Owais and Osman 

(2018), 7) Ahmed et al. (2019), 8) Buba and Lee (2019), 9) Yang and Jiang (2020), 10) Katsaragaskis 

et al. (2020), and 11) Vermeir et al. (2021). The reported parameters are: P0 = percentage of passengers 

traveling without transfers, P1 = percentage of passengers making 1 transfer, P2 = percentage of 

passengers making 2 transfers, ₸V = average passenger travel time in minutes, TRV = total travel time of 

all vehicles on all routes in minutes, Quality = quality of each solution is dimensionless; it also shows 

the demand satisfied on each route, frequency, and fleet size. 

In the following analysis and discussion of results, three proposals are grouped together due to having 

similar results, namely Buba and Lee (2019), Yang and Jiang (2020), and Katsaragaskis et al. (2020) for 

a fair comparison. We have taken the routes proposed by Buba and Lee (2019) and calculated the 

demand served by each route and the frequencies using our algorithm. In the case of Yang and Jiang 

(2020), they do not report routes, so their results are reported as follows. In the solution of 4 routes, our 

algorithm achieves better results in all evaluated parameters except ₸V, which is higher by 0.02, 0.030, 

and 0.32 minutes for each of the respective authors. However, despite this, the quality of our result is 

better (11.664), as the percentage of trips without transfers and TRV (92.94% and TRV = 117) are better 

than their proposals. In the case of the 6-route solution, our algorithm outperforms Buba and Lee (2019) 

in all parameters except for 0.26% of passengers who make trips with a transfer and TRV. As for the 

other two authors in the same 6-route solution, they achieve better results by small differences in all 

parameters except for TRV, where our route generation algorithm consistently records lower values, 

namely 183 minutes compared to 195 and 230 minutes, respectively. In the set of 7 routes, our route 

generation algorithm records better results than those shown by Buba and Lee (2019), while the other 

two authors achieve better results than our algorithm. However, it is worth noting that our algorithm 

consistently minimizes TRV, and this time the value was 191 minutes compared to 209 and 246 minutes. 

Finally, in the 8-route solution, our route generation algorithm outperforms Buba and Lee (2019) except 

for the parameter ₸V, where our algorithm delivers a value of 10.49 minutes, which is higher than the 
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proposed 10.32 minutes. Regarding the other authors, they achieve better results than our route 

generator, but these better results come at the expense of a high TRV, as can be seen that our algorithm 

uses 195 minutes in this set of routes, while the other two authors use 233 and 279 minutes, respectively. 

Analyzing the fleet and comparing our proposal for the 4, 6, 7, and 8-route solutions, we found that we 

require 78, 72, 78, and 74 buses, respectively. However, authors Buba and Lee (2019) and Katsaragaskis 

et al. (2020) report much larger fleets ranging from 84 to 101 buses. A comparison cannot be made with 

Yang and Jiang (2020) because they did not report this parameter. Finally, a comparison is made between 

the proposal of Vermeir et al. (2021) and our genetic algorithm-based route generator. It is worth noting 

that the comparison can be made in the 3, 4, 5, 6, 7, and 8-route sets because there are routes in both 

proposals. For a fair comparison, the version proposed by Vermeir et al. (2021) for the 3-route solution, 

considering routes with more than 8 nodes on each route, and for the solutions of 4, 5, 6, 7, and 8 routes, 

the version that contains up to 8 nodes in the routes to ensure consistency in the comparison has been 

considered. Also, it should be noted that the author does not indicate the fleet size. The comparison with 

the 3-route solution shows that the author's proposal is apparently better than ours in terms of achieving 

slightly better results in the parameters, except for TRV. Our proposal reports 125 minutes, and the 

authors report 150 minutes. This difference means that their proposal requires a fleet of 124 buses, 

whereas our proposal only requires 96 buses, which is reflected in the fact that our proposal has better 

quality, namely 11.571, while they have 11.418. With the 4-route solution, our proposal performs better 

in all parameters except ₸V = 10.86 minutes compared to ₸V = 10.48 minutes of the other authors. In 

this case, the fleet required by the authors is 97 buses, while in our proposal, only 78 buses are needed. 

For the solutions with 5, 6, 7, and 8 routes, both proposals show decent performance, with a high 

percentage of passengers traveling directly. However, the authors' proposal, in an attempt to reduce the 

average passenger travel time (₸V), disproportionately increases the travel time of all buses or the fleet, 

which in the worst case has increased from 195 to 302 minutes in the 8-route solution, representing an 

increase of up to 54.82%. This increase does not compensate for the reduction achieved in ₸V, as they 

report ₸V = 10.31, ₸V = 10.18, ₸V = 10.10, and ₸V = 10.07 minutes for the mentioned solutions, while 

our algorithm reported values such as ₸V = 10.72, ₸V = 10.42, ₸V = 10.38, and ₸V = 10.49 minutes in 

the same solutions, demonstrating a reduction, which in the best case is 4.17%, and an overall reduction 

of 12.87%. Regarding the fleet, even though they do not provide this information, our algorithm has 

calculated that these solutions require 82, 100, 104, and 100 buses, while our proposal requires 72, 72, 

78, and 74 buses, making our proposal significantly better. In conclusion, the route generator in the first 

phase always delivers efficient solutions of very high quality thanks to innovative crossover methods 

that we have called "aggregated reproduction," which avoids rejecting individuals as unviable and the 

mutation method, which not only alters the genetic material of an individual but also prunes the route if 

necessary, allowing for adequate exploration of the search space. As a result, the route generation 

algorithm does not allow convergence stagnation in local optima. The results of 11 comparisons reported 

in Table 4 and others not reported in the table but discussed here are highly competitive. Furthermore, 

our proposal comes from a high-precision algorithm with a coefficient of variation of quality relative to 

the mean in the order of 0.0978%. Another advantage of our algorithm is the execution time, which is 

35 minutes. It is important to note that our proposal has a unique characteristic in that it does not require 

an increase in TRV to achieve a good solution quality. For the algorithm's execution in both the first and 

second phases, a laptop with an Intel(R) Core (TM) i7-10510U CPU @ 1.80GHz 2.30 GHz processor 

and 8.00 GB (7.60 GB usable) of installed RAM was used. In Table 6, the solutions provided by our 

genetic algorithm-based route generator in each set of routes are reported. In particular, the genetic 

algorithm's behavior reports solutions, i.e., individuals, ranging from 3 routes to 8 routes, all of which 

are efficient. 
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Table 6: Set of Routes Generated by the Route Generator Algorithm 

Number of Routes  List of Solutions 
 

Number of Routes List of Solutions 
 

3 0,1,2,5,7,14,6,9,12  

7 

0,1,3,5,7,14,6 
 

0,1,3,11,10,9,7,5,14,8 4,1,2,5,14,6,9,10 

4,3,5,14,6,9,10,12,13 8,14,7,5,2,1,3 
 

 

4 

11,10,9,7,5,2,1,0 13,12,9,7,5,2,1,0 

4,3,1,2,5,7,14,6 3,11,10,12 
 

8,14,5,7,9,13,12 4,3,5,7,9,13 
 

12,10,9,6,14,5,3,4 8,14,5,7,9,10,11 

5  0,1,2,5,7,14,6,9  

8  

4,3,5,7,14,6,9,13 

11,3,1,2,5,7 
 

9,6,14,5,2,1,4 
 

4,3,5,14,6,9,12,13 0,1,3,5,14,6,9,10 

12,10,9,7,5,2,1,4 11,10,12 
 

8,14,6,9,10,11 
 

9,12 
 

6  0,1,2,5,7,9,13,12 11,10,9,7,5,14,8 

0,1,2,5,14,6,9,10 12,13,9,7,5,2,1,0 

11,3,1,2,5,7,14,6 2,5,3,11 
 

0,1,4,3,5,7,9,10 
 

8,14,5,7,9,13,12,10 

13,9,10,11 

4 Conclusion 

Based on the results presented and the discussion in comparison with findings from other authors and 

the detailed analysis provided, the following conclusions can be drawn: 1) In the first phase, the problem 

of urban transportation route design has been mathematically modeled. This mathematical model 

includes detailed parameters and variables related to a multi-objective function, three explicit constraints 

with their corresponding equivalences, and additional constraints described narratively. The intention 

behind this mathematical modeling, as with any proposal, is to create an approximation to the real world 

for practical application. It involves constraining the variables and parameters that ultimately define the 

problem's context into a model that is viably applicable to real-world cases when the algorithm 

converges. 2) Likewise, a computational prototype for generating urban transportation routes has been 

constructed with precise, efficient results and rapid execution time. This prototype was implemented in 

the Python programming language and is based on a metaheuristic inspired by the theory of evolution 

in living beings known as Genetic Algorithms. The prototype has been tested on the Swiss Road network 

by Mandl, demonstrating better results than those presented by authors in previous works. 3) In a single 

run, the algorithm delivers a highly efficient solution that belongs to a set of solutions ranging from 3 to 

8 routes. 4) The convergence of the algorithm is attributed to innovative mechanisms in the crossover 

and mutation operators. These mechanisms trim redundant routes, preventing the algorithm from getting 

stuck in local optima. 5) The quality function ensures the satisfaction of passenger demand with a high 

percentage of direct, non-transfer trips, while simultaneously minimizing the average passenger travel 

time and the total time incurred by all vehicles traveling on all routes. 6) Importantly, the algorithm has 

demonstrated that achieving high efficiency doesn't require increasing the total route travel time (TRV), 

as is the case with some other proposals. 7) In the second phase, an assignment algorithm is used to 

allocate passenger demand to the routes designed in the first phase, determining the demand served by 

each route. Fleet size and bus frequencies for each route, as well as the total fleet size, were calculated. 

8) It was verified that computational complexity is effectively addressed in the first phase. 
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