
ISSN: 2182-2069 / E-ISSN: 2182-2077 

298 

Variational Autoencoder Diffusion Model (VAEDM) and 

Divergence Asynchronous Reinforcement Learning (DARL) 

for Rail Surface Defect Detection 
 

Samyuktha Sasi Sekaran1, and Dr.M. Subaji2* 
 

1Ph.D. Research Scholar (EPT), School of Computer Science and Engineering, Vellore Institute of 

Technology, Vellore, India. samyuktha.ss2015@vit.ac.in,  

https://orcid.org/0000-0002-5464-1511 

 
2*Professor & Director, Institute for Industry and International Programmes, Vellore Institute of 

Technology, Vellore, India. msubaji@vit.ac.in, https://orcid.org/0000-0001-5332-4656 

 

Received: January 19, 2024; Revised: March 13, 2024; Accepted: April 12, 2024; Published: May 30, 2024 

 

Abstract 

The speed and load capacity of trains are improving at an accelerating rate, which raises the 

standards for railway services' security criteria. The track's surface may progressively reveal varying 

degrees of defects because of the impacts of moisture, temperature, load, and other factors; if the 

flaws never addressed in a prompt period, the degree of defects would expand, significantly raising 

the probability of train service. The development of automatic RSDD (Rail Surface 

Defect Detection) has substantial practical and scientific implications. In this study, a multi-crack 

detection technique depends on Variational Autoencoder Diffusion Model (VAEDM), The 

introduction of VAEDM allows for the non-destructive detection of fastener and RSD. In order to 

produce hidden elements from images that have various cracks, VAEDM combines the multi-layer 

and a rail surface image encoder was introduced. Zero Shot- Divergence Asynchronous 

Reinforcement Learning (ZS-DARL), Policy-Gradient is used to establish the relationship between 

defects and non-defects. DARL transformer encoder is introduced for taking long-range 

dependences for FE (Feature Extraction) from detected objects images with various patterns and 

dimensions. The simulation outcomes on the open Railway Track Fault Detection (RTFD) and Rail 

Surface Defect Datasets (RSDDs) with rail surface defects are collected from rail tracks surface 

defect detection. Results are measured using the metrics like recall, precision, F-measure, and 

accuracy.  

Keywords: Rail Surface Defect Detection (RSDD), Variational Autoencoder Diffusion Model 

(VAEDM), Zero Shot - Divergence Asynchronous Reinforcement Learning (ZS-DARL), and Class 

Knowledge Graph (CKG). 

1 Introduction 

Both transporting and regulating the train's speed are track functions in the high-speed rail system. The 

security of railroad transportation is directly impacted by the way it works. As an outcome, the steel rail 

needs to be flawless and lack of surface flaws. Unfortunately, surface defects are unavoidable and then 

developed by deterioration, temperature variations, fatigue loading, and foreign objects among the wheel 
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and rail throughout train operations (Kishore et al., 2019; Shaik et al.,2020), and then spread over 

repetitive extrusion, that is brought due to the contact tension that exists among the rail and the wheel 
(Yang et al., 2018). RSD may cause quick degradation and failure that would require expensive repair 

if they are not found in a timely manner. RSDD depends mostly on observation by railroad operators in 

a timely manner. 

While manual detection offers lower detection efficiency, a higher detection omission rate, and poor 

performance in real time, it also has the benefit of being easy to use and inexpensive. Conventional 

detection techniques necessitate manual operation, which is labor-intensive, time-consuming, and 

inefficient. Additionally, it exposes examiners for predicting risk factors. Subsequent techniques for 

detection include vision-based techniques (Taştimur et al., 2016) (Zhang et al., 2018), time-frequency 

analysis, nondestructive evaluation (EC (Eddy Current), UW (Ultrasonic Wave), or AE (Acoustic 

Emission) (Park et al., 2021), and a combination of the previously mentioned methods (Yu et al., 2018). 

Because there is insufficient heuristic structure data or texture attributes, the previously mentioned 

approaches are not very effective for RSDD (Wu et al., 2022). Nevertheless, the signals produced by the 

flaws in railroad surfaces are extremely weak, making it challenging for the aforementioned 

techniques for detecting them. Simultaneously, the fault signals are susceptible to interference from the 

external background, making it challenging to obtain satisfactory outcomes. The technique for 

RSDD still has a lot of prospective for development. Consequently, there is great practical utility and 

scientific importance in the automatic RSDD 

RSDD employs the MV (Machine Vision) technique, which was made possible by advancements in 

computer technology. Due to its advantages in terms of speed, accuracy, and dependability, MV is 

receiving increasing interest from researchers, leading to the development of numerous techniques for 

the RSD (Trivedi et al,2023; Marangunic et al., 2022). In order to acquire fault information for testing 

and training models, real detection images are manually screened. Utilizing cameras, conventional ML 

(Machine Learning)-based detection techniques are employed for RSDD (Jonnerby et al., 2023, 

Srinivasa et al., 2023; Kim et al., 2019). These techniques demand the creation of manually created or 

predetermined features by human evaluation of images of RSD, followed by the suggestion of the 

appropriate FLA (Feature Learning Algorithm) for identification. For RSDD, it must employ 

the FE approach (Wang et al., 2016) or an operator template and model-based TS (Threshold 

Segmentation) technique (Banik et al., 2020). Nevertheless, these techniques are vulnerable to defects 

that might end up in blind spots being detected. This makes achieving strong detection capabilities using 

MV algorithms is challenging. 

The advancement of RSDD technologies has been significantly enhanced by classic ML detection 

techniques, however these methods fall short in extracting the fault features and have notably poor 

detection accuracy for small targets. Deep Convolutional Neural Networks (DCNNs) have been 

established in recent times due to the explosive growth of DL (Deep Learning). These networks are 

capable of accurately and efficiently FE dynamically. Multiple investigations (Yuan et al., 2019) have 

successfully classified RSD using deep CNN due to its tremendous capabilities. The inability of these 

algorithms to identify image imperfections, which is essential in real-world scenarios, is one of their 

fundamental shortcomings. Moreover, quick inference is not possible with the suggested complex 

frameworks. Detecting incidents of objects in images is a basic task in CV (Computer Vision), known 

as Object Detection (OD). It has been extensively employed in numerous sectors throughout the last ten 

years (Du et al., 2017). In certain domains, the precision of detection has even outperformed human 

ability (Min et al., 2018). It might be a useful technique for identifying and locating rail flaws. For OD, 

sophisticated DL-OD methods have been developed. Subsequently, RL (Reinforcement 
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Learning) evolved rapidly, and because of its superior representation of features and modeling abilities, 

it has emerged as the distinct solution to RSDD. As an outcome, the study is heavily weighted on the 

real-time RSDD, which heavily depends on the network's detecting rate.  

In this study, a unique OD scheme, and RSDD is introduced to detect rail defects. With the 

introduction of VAEDM, latent materials can be created from images with various cracks through the 

combination of a multi-layer with a rail surface image encoder. Zero Shot- Divergence Asynchronous 

Reinforcement Learning (ZS-DARL), Policy-Gradient is used to establish the relationship between 

defects and non-defects. ZS-DARL method was tested and compared with other methods. The suggested 

technique's primary benefits including higher accuracy and lower error. ZS-DARL provides superior 

accuracy and combined RSDD and localization capabilities. 

2 Literature Review  

In order to detect road cracks, (Sekar & Perumal, 2021) introduced a new multi-tasking Faster Region 

CNN (R-CNN) methodology that utilizes the advantage of the Region of Interest (RoI) Align and Global 

Average Pooling (GAP) approaches. In order to prevent quantizing the stride, ROI Align is employed. 

For the purpose to map the suggestion to the input image via bi-linear interpolation and minimize data 

loss. The GAP layer receives the output features from ROI Align and significantly condenses the multi-

dimension information into a single FM (Feature Map). The FC (Fully Connected) layer (softmax) and 

a regression framework are both given the output of the GAP layer in order to estimate the position of 

the crack with a bounding box. Images from Chennai, Tamil Nadu, India's Outer Ring Road have been 

collected (a dataset comprising 19300 images). In order to determine the ground-truth label of the 

bounding boxes for the cracks, the gathered road images were pre-processed utilizing a variety of 

standard IP (Image Processing) algorithms. The outcomes of classification and detection were assessed 

utilizing the F1-measure, precision, and recall. 

A RSDD technique depends on IE (Image Enhancement) and improved Cascade R-CNN was 

presented by (Luo et al., 2021). For enhancing the contrast among the defects and the background, the 

rail surface image is initially processed using the upgraded Retinex technique. Next, an improved 

Cascade R-CNN is used for RSDD. To address the imbalance among the training and difficult image 

IoU distributions, the discrepancy among the extracted FM and the RoI due to rounding quantization in 

the RoI pooling, and the inaccuracy of the regression loss Smooth L1 for the regression of the predicted 

bounding box, the Intersection over Union (IoU) balanced sampling, RoI align, and complete 

IoU (CIoU) loss are implemented. At last, in order to address the issue of over-fitting of network training 

brought through limited image data, the dataset of RSD images is enlarged utilizing techniques including 

flipping transformation, RC (Random Cropping), brightness transformation, and GANs (Generative 

Adversarial Networks). 

For RSD, (Wang et al., 2022) suggested a novel surface defect detection network based on Mask R-

CNN. A new evaluation metric called CIOU is employed in the region proposal network to get around 

the constraints of IOU in particular situations. In the training stage, both DA (Data Augmentation) and 

TL (Transfer Learning) are employed to deal with the issue of small defective datasets. The detection 

network has been developed in a pyramid feature structure for multi-scale fusion. With more accuracy, 

the fault place can be found using the suggested framework.  

A multiobject detection technique based on DCNN was presented by (Zheng et al., 2021, Unisa et 

al., 2022); it can detect fastener and rail surface flaws non-destructively. Initially the enhanced You Only 

Look Once v5 (YOLOv5) structure limits the rails and fasteners on the railway image. Next, the RSD are 
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found and the defect region is divided using the defect detection algorithm according to Mask R-CNN. 

Ultimately, the fastener state is classified using an algorithm built on the ResNet architecture. 

Experimental testing is carried out utilizing images of ballast and ballastless railroad tracks that were 

gathered from the Shijiazhuang-Taiyuan high-speed railroad in order to confirm the reliability and 

efficacy of the suggested approach.  

An ensemble structure for industrialized rail defect detection was created by (Li et al., 2022). To gain 

features, many backbone networks are utilized separately. These are then combined in a binary format 

to create sub-networks that are more effective and diverse. To further increase the diversity of the model, 

random procedures are employed to image augmentation and feature augmentation. To cut down on 

computing costs and model parameters, an integrated FPN (Feature Pyramid Network) is used. The 

technique executes better than a single detecting structure in the given rail fault challenge, according to 

experimental outcomes. 

An enhanced YOLO X and IET (Image Enhancement Technique) for RSDD was presented by 

(Zhang et al., 2023). The surface image of the steel rail is first processed using a fusion IET in the Hue, 

Saturation, and Value (HSV) space, emphasizing flaws and improving background contrast. Then, for 

feature fusion in the YOLOX backbone structure, the faster and more effective Bidirectional 

FPN (BiFPN) is implemented. Furthermore, to improve the capacity to represent image features, the 

Normalization-based Attention Module (NAM) attention appliance is provided. The technique's 

RSDD enhances the mean Average Precision (mAP) of the YOLOX networks by 2.42%, according to 

the testing data.  

A Coarse To Fine Model (CTFM) was presented by (Yu et al., 2018) to detect flaws at various scales. 

Subimage, region, and pixel levels are the 3 scales on which the model operates, ranging from coarse to 

fine. The baseline subtraction technique utilizes the longitudinal direction’s row consistency to heavily 

filter the defect-free range at the subimage level, leaving roughly recognized subimages that may include 

defects. At a higher level, the region extraction approach uses phase-only Fourier transforms (FT) to 

find specific fault regions. It was influenced by visual saliency models. Pixel consistency is used at the 

highest stage of the pixel subtraction algorithm to fine-tune each defect's shape. A real rail line and 

Type-I and Type-II RSDD datasets are used to assess the suggested methodology. Both the defect-level 

index and the pixel-level index demonstrate that CTFM works better than the most advanced techniques, 

as demonstrated by the testing data. 

The new Rail Border Guidance Network (RBGNet) for salient Rail Surface (RS) detection has been 

suggested by (Wu et al., 2022). Firstly, a unique design is suggested to precisely identify the RS with 

well-defined bounds by making full use of the complementarity among the RS and the Rail Edges (RE). 

Second, to monitor the network and learn the transition among the input and ground truth, a novel hybrid 

loss comprising of Binary Cross Entropy (BCE), Structural Similarity Index Measure (SSIM), and IoU 

is presented and prepared into the RBGNet. Lastly, tests carried out on the intricate Unmanned Aerial 

Vehicle (UAV) rail dataset reveal that the technology is capable of achieving a better DR (Detection 

Rate) and adapting well to challenging situations. 

The pyramid feature CNN for RSDD was introduced by (Liu et al., 2022). Initially, the Pyramid 

Feature Extraction Module (PFEM) extracts multi-scale FMs according to the attributes of backgrounds 

and faults. The FMs are then fed into a lightweight network with a limited set of parameters. Utilizing 

the IOU loss function and the BCE loss function, the network is trained utilizing only forty percent of 

the dataset. In the study, the RSDD dataset is used to compare the effectiveness of the suggested strategy 

with alternative approaches. 
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An improved Unified Perceptual Parsing for Scene Understanding Network (UPerNet) designed 

specifically for RSDD was presented by (Min et al., 2023). Specifically, the Transformer architecture-

based Swin Transformer Tiny version (Swin-T) network is used for proficient FE. This method avoids 

the problem of inductive preference by utilizing the global data contained in the image. The window-

based self-attention, thereby lowering the parameters of the model’s count, further increases the 

effectiveness of the model. For gradient optimization, Cross-GPU Synchronized Batch Normalization 

(SyncBN) is presented, which incorporates the Lovász-hinge loss function to take advantage of pixel 

dependence relations. 

3 Proposed Methodology 

In this study, a multi-crack detection technique depends on VAEDM has been introduced which achieves 

non-destructive RSD and fastener defects. VAE is a generative framework explicitly designed to capture 

the underlying probability distribution of a dataset and separate objects from them. Then, Zero                   

Shot-Divergence Asynchronous Reinforcement Learning (ZS-DARL), Policy-Gradient is used to 

establish the relationship between defects and non-defects. In order to derive FE from OD images, 

transformer encoders are employed to capture long-range relationships. The suggested technique's 

general architecture is depicted in Figure 1. 

 

Figure 1: Architecture Diagram of Surface Defect Recognition  

1.1. Dataset Description 

Two benchmark datasets like RTFD and RSDDs has been introduced for surface defect detection.  

RTFD: https://www.kaggle.com/datasets/salmaneunus/railway-track-fault-detection/ data. It 

consists of defective and non-defective images with training, testing, and validation set with 384 images. 

Both classes have equal number of images.  

RTFD and RSDDs dataset 
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RSDDs: Type-I and Type-II rail defect data comprise the RSDDs dataset. 67 defect images taken 

from high-speed train lines were employed to detect type-I defects. On the other hand, 128 defect images 

from regular/heavy-duty transportation tracks were used to gather type-II problems. Furthermore, in the 

training stage, the algorithm requires a finite number of defective images, that will be chosen at random 

from the test set. Type-I rail images are 160 × 160 in resolution after partitioning and resizing, but          

Type-II rail images are 64 × 64 in resolution. It has been collected from https://github.com/neu-rail-

rsdds/rsdds.  

1.2. RSDD 

Suggested model includes of IE (Image Encoder), the CE (Class Encoder), and the classifier as illustrated 

in Figure 2. Initially the IE function encodes an input image as an image feature. Secondly, the CE 

function encodes classes as the class features. To attain the image label, the classification function 

receives the image feature and the class value. The training and testing phase comprise the two phases 

of the proposed architecture as shown in Figure 2.  

 

Figure 2: Proposed Multi-crack Detection Model 

The IE, which is made up of the TE (Transformer Encoder) and IP, is responsible for extracting the 

features from the image. The word embedding, the DARL, and the Learning Agent (LA) construction 

are all included in the CE. It uses the DARL to construct the defect classes in the LA, starts features 

using word embedding, and then employs the DARL to determine each agent's features. To determine 

the class score, the classifier module multiply the characteristics of the input image by the class features. 

Based on this score, the class data is predicted. 

Image Encoder 

Figure 2 (Kampffmeyer et al., 2019), the image encoder is composed of the TE component and image 

processing component. The transformer encoder needs the image processed into a certain input form, 

which is handled by the image processing component. During the training and testing phases, there is 
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no cross-section amongst the input image classes. To extract individuality, the transformer encoder 

transmits the previously analyzed image. 

Image processing: The image is divided into N fixed-size series patches by the image processing 

element, and a linear block embeds the input patches into a 1D latent variable. Subsequently, every patch 

embedding and the specific token have position embeddings, and all patch embeddings have specific 

tokens added to the front. Thus, the image processing function processes the image to the input format 

needed through the TE.  

TE: Transformer blocks are arranged in L layers within the (TE) Transformer Encoder system. The 

transformer block consists of the skip connection block, MLP block, Multihead Self Attention (MSA), 

and normalization (Norm). le0  is presently employed to denote an input image x ∈ ℝℋ×𝒲×𝒞 that is 

supplied into the transformer encoder element. Firstly, utilizing Norm, MSA, and skip connection 

blocks, le0 is denoted as le l
′ , and the method is given by equation (1). There, le l

′  denotes the 𝑙𝑡ℎ layer of 

the transformer block. Secondly, employing MLP, Norm, and skip connection blocks to denote lel, the 

procedure may be expressed as equation (2). In image feature, le0 is ultimately incorporated as lelover 

the TE, and [class] token letb
0  is assigned as x′ utilizing the Norm block; this procedure may be summed 

up as equation (3). The transformer encoder module operation stated as follows,  

lel
’ = MSA(Norm(lel− 1)) + lel− 1, ∀l =  1⋯ tb (1) 

lel = MLP(Norm(lel
’ ))  + lel

’ , ∀l = 1⋯ tb (2) 

x ′ =  Norm( letb
0 ) (3) 

where tb is the quantity of transformer blocks. The TE phase and the IP phase extract the input image 

x ∈ ℝℋ×𝒲×𝒞as a 1D vector x′ ∈ ℝ𝒟. 

Object Detection Using VAEDM 

A standard normal distribution-following variable is gradually denoising it in order to use the Diffusion 

Model (DM) to learn a target defect object, which is represented as p(x). As the length of the fixed 

Markov chain can be denoted as T, the diffusion process can be computed through repeatedly adding 

noise, represented by ϵ ∼ N(0, 1) to x the initial input image.  

xt = αtx + βtϵ (4) 

Here, the hyperparameters determining the noise region can be represented as αt and βt , and t is 

consistently sampled from 1...T. The following defines the learning objective of common                                   

score-matching DM:  

LDM = 𝔼x,ϵ~𝒩(0,1),t[‖ϵ − ϵθ(xt, t)‖2
2] (5) 

Modeling a CD (Conditional Distribution) p(x|c), where x represents the image representation and c 

is the condition. Then, equally weighted denoising AE that has been provided to predict that xt−1 will 

be the solution from xt can be denoted as ϵθ(xt, t). A conditional denoising backbone, ϵθ(xt, t, 𝜏θ(c)), 

can be trained by DM with the following learning objective, to simulate such CDs. 

LDM = 𝔼x,c,ϵ~𝒩(0,1),t[‖ϵ − ϵθ(xt, t, 𝜏θ(c))‖2
2] (6) 

Here, the domain-specific encoder that converts c into an intermediate representation is indicated by 

the symbol 𝜏θ. With DM, CD p(x|c) is constructed, where the denoising backbone's computational effort 

is highly dependent on the magnitude of x. Latent DMs (LDMs) conduct diffusion and denoising in a 

perceptually compressed latent space by using a pre-trained encoder E and decoder D. Since z may be 

decoded using D to correspond to x, LDM functions inside the latent domain p(z). 
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The VAE methodology is a revolutionary technique that combines DL and statistical models. The 

primary differentiator between VAE and conventional AEs is their ability to train latent variables having 

continuous distributions, which has shown to be an especially helpful feature when addressing 

computational modeling tasks. Rather than returning discrete values, VAE encoding is wisely built to 

provide a distribution through the latent space. To be more precise, the E creates a pair of vectors 

consisting of a standard deviation vector (σ), and a mean vector (μ) and a standard deviation vector (σ). 

Therefore, unlike typical AEs that learn a deterministic mapping, the VAE aims for learning the 

distributions of latent features according to the mean values and their variances. The VAE structure is 

illustrated in Figure 3, and the images of σ and μ values indicate that the latent dimensional space is 

stochastic. The latent representation coupled with weights can be denoted as Z and biases can be denoted 

as (𝜙), and X is the encoder model's input. 

 

Figure 3: Variational Autoencoder (VAE) Architecture 

With 𝑥𝑖 standing in for the 𝑖th image, label 𝑋 as the collection of all images in the original dataset. 

It is encoded to 𝑧, or 𝑧=𝑔(𝑋), via a function called 𝑔(𝑋), whereas the size of 𝑧 is much smaller than that 

of 𝑋. Once the simplified image dataset 𝑧 has been provided to the decoder, 𝑋 ̃is produced by decoding 

𝑧. Thus, �̃� = 𝑓(𝑧) is the mathematical expression for the decoder. The proximity among �̃� and 𝑋 is then 

estimated using the loss function 𝑙 =∥ 𝑋 − �̃� ∥2 under an arbitrary norm. The framework is deemed 

effective if 𝑙 has a modest magnitude. Assume that in this case, the encoded 𝑧 will contain the majority 

of the beneficial information from 𝑋, meaning the level once dimensionality reduction is implemented 

throughout the framework’s training phase, 𝑧 will be sufficient to represent the original dataset.  

Let 𝑋, for instance, considered an image with the dimensions that contain the data about 𝑋 are 𝐶, 

𝐻 and 𝑊. The main objective is to train an AE to reduce the dimensionality of the photo to 𝑧 ∈ ℝ𝑑. 

After that, a decoder is applied to modify the image to �̃� ∈ ℝ𝐶×𝐻×𝑊  so that the loss function is as little 

as possible. Since the distribution of 𝑧, indicated by 𝑝(𝑧), has not been described, in reality this model 

will produce both undesired noisy constituents and valuable properties of the image. In order to make 

up for this shortcoming, the VAE was employed to simulate the probabilistic distribution of 𝑧 before all 

pertinent information from 𝑋 was taken out and employed to create a sampling space of 𝑧, which was 

then fed into the decoder to retrieve the image. 

Since I is an identity matrix in the case of 𝑧~𝑁(0, 𝐼) , 𝑧 can be considered as a MRV 

(Multidimensional Random Variable) that follows the conventional MGD (Multivariate Gaussian 
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Distribution). The related ith images are represented by 𝑧𝑖 and 𝑥𝑖, respectively, and we express them as 

random variables, 𝑧 and 𝑋. Using this configuration, the final result is produced using a two-stage 

stochastic method where 𝑧 is considered the hidden variable: (1) the previous distribution of 𝑋 is encoded 

and sampled to produce 𝑧𝑖; (2) an image 𝑥𝑖 is produced according to the CD 𝑝(𝑋ȁ𝑧𝑖).  

In terms of the decoding procedure, the decoder was fed the images 𝑧𝑖  that came from the 

𝑁(0,𝐈) distribution. Next, the parametrized decoder created a mapping that produced an accurate 

distribution of 𝑧𝑖 that corresponded to 𝑋, that can be represented as p_ϕ (X|z_i). For each given 𝑧𝑖,  𝑋 

obeys an isotropic MGD, i.e., Equation (7) holds, in order to minimize the statistical complexity. This 

indicates that the distribution of 𝑋|𝑧𝑖  can be derived by fitting 𝜇𝑖
′  and 𝜎𝑖

′2  after 𝑧𝑖  is taken into the 

decoder. 

pϕ(Xȁzi) = N(X|μi
′(zi; ϕ), σi

′2(zi; (zi; ϕ) ∗ I ) (7) 

Equation (8) can be derived by considering: 𝑧~𝑁(0,𝐈), where 𝑚 is the hyper-parameter in the VAE 

framework. 

pϕ(X) =
1

m
∑pϕ(X|zj)

m

j=1

 
(8) 

Next, using the input dataset 𝑋 as a basis, the Maximum Likelihood Estimation (MLE) is employed to 

compute ϕ. Equation (9), which displays the detailed formulation, provides 

ϕ∗ = argminϕ − ∑logpϕ(xi)

n

i=1

= argminϕ − ∑ln(
1

𝑚
∑𝑝ϕ(X|zj)

𝑚

𝑗=1

)

n

i=1

 

(9) 

In general, the 𝑋 dimension is rather huge, whereas the dimension of 𝑧 is not exceptionally small 

regardless of the dimensionality reduction method. Thus, in order to obtain a precise computation of 

𝑝ϕ(𝑋), a sufficiently enough amount of images 𝑧𝑖  must be taken into consideration. The PD (Posterior 

Distribution) 𝑝ϕ(zȁxi) must be added to the encoder in order to handle this. The application of the Bayes 

formula to the computation of 𝑝ϕ(zȁxi)is demonstrated by equation (10) (Ding, 2022). 

pϕ(zȁxi) =
pϕ(xiȁz)p(z)

pϕ(xi)
 

(10) 

Next, the parametrized encoder and ϕ are optimized using the AutoEconding Variational Bayesian 

(AEVB) technique (Mak et al., 2023). A PD of the encoder (with parameter θ) is represented by 

𝑞𝜃(𝑧ȁ𝑥𝑖) . Then the encoder may be used to derive the 𝑧ȁ𝑥𝑖 probabilistic distribution (Mak et al., 2023), 

if 𝑞𝜃(𝑧ȁ𝑥𝑖)~𝑝𝜙(𝑧ȁ𝑥𝑖). 𝑝𝜙(𝑧ȁ𝑥𝑖) is of MGDs since 𝑝(𝑧) and 𝑝ϕ(𝑋ȁ𝑧)  exist. Therefore, all that is needed 

to describe the posterior of the generative model is to obtain the outputs of 𝜎2 and 𝜇 from the encoder. 

Equation (11) indicates that for any image 𝑥𝑖, 𝑞𝜃(𝑧ȁ𝑥𝑖)  should meet the distribution. 

qθ(zȁxi) = N(zȁμ(xi; θ), σ
2(xi; ϕ) ∗ I) (11) 

Steps 1 through 4 of the VAE algorithm's actual procedure are described below for this research. 

Step 1:  The data point/image 𝑥𝑖  was allocated by the encoder, and NN (Neural 

Network) methods were used to determine the parameters of qθ(zȁxi)  that the latent variable 𝑧 follows. 

Determining the parameters 𝜇𝑖  and  𝜎𝑖
2  of the GD (Gaussian distribution) and 𝑧ȁ𝑥𝑖  complies with 

sufficient, as this PD is of an IGD (Isotropic GD).  

Step 2:  An image, 𝑧𝑖, was extracted from the distribution using the  𝜇𝑖 and 𝜎𝑖
2 parameters, and it is 

considered to be 𝑥𝑖 of a similar kind. 
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Step 3:  Once 𝑧𝑖was allowed into the decoder, the distribution parameters 𝑋ȁ𝑧𝑖  might be obtained. 

This allowed the decoder to determine the likelihood distribution pϕ(Xȁzi) .Indicate the output 

parameters as 𝜇𝑖
′ and 𝜎𝑖

2′ since the likelihood would likewise follow an IGD.  

Step 4:  Using sampling, a series of data points {�̃�𝑖
′} was collected after the statistical parameters of 

the distribution Xȁzi were determined.  

pϕ(Xȁzi) = N(Xȁμi
′(zi; ϕ), σ′2 ∗ I) (12) 

Furthermore, equation (12), in which 𝜎′2  is regarded as a hyper-parameter, can be used to 

mathematically define pϕ(Xȁzi) , which is known to be an isotropic MGD having fixed variance.  

Given that pϕ(Xȁzi) is an isotropic MGD with constant variance, it makes sense to define 𝜎′2 as a 

K-dimensional vector in this research, where each element has a probability of 0.5. From there, equation 

(13), the equivalent loss function, can be expressed. 

L =
1

n
∑∑

1

2
(−1 + σi

(j)2
n

j=1

n

i=1

+ μi
(j)2

− lnσi
(j)2

) +
1

n
∑‖xi − μi

′2‖

n

i=1

 
(13) 

Here, 𝑧𝑖  is imaged from 𝑧ȁ𝑥𝑖  and functions as the input of the decoder; μi
′s is the output of the 

decoder, that particularly corresponds to the ultimately generated data point �̃�𝑖; and xi symbolizes the ith 

image, which serves as the input of the encoder; 𝜇𝑖 and 𝜎𝑖
2 are the outputs of the encoder, which serve 

as the parameters of the distribution of 𝑧ȁ𝑥𝑖. 

Class Encoder  

Class encoder system includes the Learning Agent (LA) Construction, word embedding, and DARL 

system. The defect LA is generated utilizing the surface defect class data provided by the DARL 

function. The agents in the generated DARL have their features prepared by the word embedding 

function. When agents and the defect LA are supplied into the DARL encoder part it may acquire every 

agent visual representation.  

Zero-shot recognition (ZSR): Learning a model which is generalize to novel classes that doesn’t 

appear in the training phase is the objective of ZSR. According to formal definitions, a dataset X contains 

samples for a training set 𝑋𝑡𝑟𝑎𝑖𝑛  =  {(𝑥𝑡𝑟𝑎𝑖𝑛
1 , 𝑦𝑡𝑟𝑎𝑖𝑛

1 ),⋯ , (𝑥𝑡𝑟𝑎𝑖𝑛
𝑛 , 𝑦𝑡𝑟𝑎𝑖𝑛

𝑛 )}  and a test set 𝑋𝑡𝑒𝑠𝑡  =

 {(𝑥𝑡𝑒𝑠𝑡
1 , 𝑦𝑡𝑒𝑠𝑡

1 ),⋯ , (𝑥𝑡𝑒𝑠𝑡
𝑛 , 𝑦𝑡𝑒𝑠𝑡

𝑛 )}  , where the base classes are represented as 𝑦𝑡𝑟𝑎𝑖𝑛
𝑛 ∈  𝑌𝑏𝑎𝑠𝑒 , novel 

classes are represented as 𝑦𝑡𝑒𝑠𝑡
𝑛 ∈  𝑌𝑛𝑜𝑣𝑒𝑙 , and 𝑌𝑏𝑎𝑠𝑒  ∪  𝑌𝑛𝑜𝑣𝑒𝑙  =  𝑌 . A fully disjoint collection of 

classes is employed to train and test the zero-shot framework: The ability of 𝑌𝑏𝑎𝑠𝑒  ∩ 𝑌𝑛𝑜𝑣𝑒𝑙  =  ∅ to 

transmit data from 𝑌𝑏𝑎𝑠𝑒 to 𝑌𝑛𝑜𝑣𝑒𝑙 is crucial.  

Since the training and testing data are entirely distinct sets of labels and non-i.i.d. It is usually 

challenging to generalize a direct mapping 𝑓(⋅) ∶  𝑋 → 𝑌  from training data for labeling in 

ZSR situations. Therefore, in order to serve as a link among base classes and novel classes, the latent 

semantic space S for every class becomes available throughout both training and testing. More 

specifically, 𝑠𝑦  ∈  𝑆  the semantic embedding vector is linked to each class y ∈ Y. A solution would 

acquire by mapping from data to latent semantic space, or 𝑓(⋅) ∶  𝑿 → 𝑺  , and then apply it to the testing 

data. This approach is mostly dependent on the mapping's capacity to transfer information from 𝑌𝑏𝑎𝑠𝑒to 

𝑌𝑛𝑜𝑣𝑒𝑙. Therefore, learning a mapping from data to latent semantic space 𝑓(⋅) ∶  𝑿 → 𝑺 and generalizing 

on the testing data is an alternative. 
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Learning Agent (LA) Construction: RL is a ML method for developing satisfactory policies to 

address class encoder problem (Arulkumaran et al., 2017). A typical RL model is characterised as 

follows: S stands for the state space, A for the action space, P for the state transition probability, and R 

for the reward function in a 4-tuple (S, A, P, R).LA learns to perform in a given state to maximise future 

rewards through interaction with the environment. It is important to note that when making decisions, it 

is important to balance the agent's short-term and long-term gains (François-Lavet et al., 2018). RL agent 

is capable of picking the appropriate action for each state with the highest cumulative rewards based on 

cumulative learning experience. 

Word embedding: LA parameters are to be initialized in this part. Every agent in the LA has its 

attribute generated utilizing word embeddings that were pre-trained on extensive language datasets.                

Pre-trained on Wikipedia 2014 and Gigaword 5, GloVe is employed by the ZS- LA to map every class 

into a 300-D vector form. An unsupervised learning system called GloVe is employed to generate vector 

illustrations for words. After training on consolidated global word-word combination statistics from a 

corpus, intriguing linear components of the word vector space are displayed in the final visualizations. 

DARL MODEL: LA maps inputs to state data in RL by sensing the environments in discrete time 

periods. LA takes action and monitors the background's response, which takes the shape of incentives 

or penalties. Agents notice alterations to the environments and adjust their policies to maximize the 

possible benefit after acting based on states and earning a reward (Figure 4 represents the communication 

between the agent and environment). Determining the best course of action which optimizes the 

cumulative benefits is the objective of the optimal policy. 

 

Figure 4: Agent Environment Interaction (Left), a and r Sequences (Right) 

Agent behavior is defined by policies, which may be thought of as a mapping function between states 

to actions. The likelihood that agents will act in a certain way under a certain state’s is represented by 

the policy's model, p(aȁs). NNs allow for the realization of policies since S and A represent the input 

and output, correspondingly. Prospective views were performed with the NN map created with 

states/observations and actions. The predicted return between state’s to policy π (where𝐺𝑡 is the overall 

R between S to the conclusion of the episode and γ is the decaying factor) is the state-value function of 

a Markov Decision Process (MDP).  

υπ(s) = ∑π(aȁs)

a

∑p(s′, rȁs, a)[r + γ

s′,r

υπ(s′)]  (14) 

With a policy π and an MDP M = (S,A,P,R,𝛾), the state series 𝑆1, 𝑆2, . . 𝑆𝑛 is a Markov process (S, 𝑝𝜋) 

with 𝑆1, 𝑅2, 𝑆2, 𝑅2, … . , 𝑆𝑛, 𝑅𝑛, as the state reward sequence. (𝑆, 𝑝𝜋 , 𝑅𝜋, 𝛾) is an MRP. 

υπ(s) = ∑ π(aȁs) {r(s, a) + 𝛾 ∑ T(s′ȁs, a)υπ(s′)

s′∈S

}

a∈A

  
(15) 

Agent 

Enviro

nment  

Env  Agent Env  Agent Env  
Reward 

𝑅𝑡 

Action 

𝐴𝑡 

𝑆𝑡+1 

𝑠1 𝑎1 𝑠2 𝑠3 𝑎2 

𝑠1 𝑎1 𝑠2 𝑎2 

Trajectory 𝜏 = {𝑠1, 𝑎1, 𝑠2, 𝑎2, 𝑠3, 𝑎3, … 𝑠𝑡, 𝑎𝑡} 

𝑝𝜃(𝜏) = 𝑝(𝑠1)𝑝𝜃(𝑎1ȁ𝑠1)𝑝(𝑠2ȁ𝑠1, 𝑎1)𝑝𝜃(𝑎2ȁ𝑠2)𝑝(𝑠3ȁ𝑠2, 𝑎2)… 
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Here, the state transition matrix between state’s to s’ with policy π can be represented as 𝑇𝑠,𝑠′
𝜋 , and 

reward at state’s of the agent π can be denoted as 𝑟𝜋
𝑠. It is possible to express the value function in matrix 

form. 

υ⃗ π = rπ + 𝛾𝑇𝜋υ⃗ π (16) 

Here, the transition matrix can be denoted as T π and a vector (υ⃗ π). The matrix is solved using the 

iterative approach. The expected return at beginning from state s, acting on a, and then implementing 

policy π is represented by the State-action value function 𝑞𝜋(𝑠, 𝑎) ((Deep Reinforcement Learning and 

Control Lectures, 2021)).  

𝑞𝜋(𝑠, 𝑎) =  Eπ[Rt+1 + 𝛾𝑞𝜋𝑆𝑡+1, 𝐴𝑡+1ȁSt = s, At = a] (17) 

The calculation of υπ(s)  and 𝑞𝜋(𝑠, 𝑎)  can be seen in Figure 5. In procedure, the prediction is 

frequently expressed in the form of random reward (Deep Reinforcement Learning and Control Lectures, 

2021). 

𝑞𝜋(𝑠, 𝑎) = ∑p(s′, rȁs, a)

s′,r

 [r + 𝛾 ∑π(aȁs)qπ(s′, a′)

𝑎′

] 
(18) 

 

Figure 5: (a) Illustration of State Value Computation. (b) Action Value 

By utilizing SG (Stochastic Gradient), Policy Gradient (PG) is applied for minimizing policy loss 

and is represented in the following way (Deep Reinforcement Learning and Control Lectures, 2021),  

∇Rθ
̅̅̅̅ =

1

N
∑ ∑(∑ γt′−trt′

n

Tn

t′=t

− b)

Tn

t=1

N

n=1

∇ log Pθ (at
nȁst

n) 

(19) 

Here, 𝑉𝜋(𝑠𝑡
𝑛) is represented by the baseline, the time decaying factor can be symbolized as γ, and 

the reward between time step 𝑡′ to the episode's end can be denoted as 𝑟𝑡′
𝑛. The absence of expectation 

E, 𝑄𝜋(𝑠𝑡
𝑛 , 𝑎𝑡

𝑛 )  =  𝐸[𝑟𝑡
𝑛 + 𝑉𝜋(𝑠𝑡+1

𝑛 )], introduces unexpectability. The gradient is approximated as 

follows ((Deep Reinforcement Learning and Control Lectures, 2021)),  

∇Rθ
̅̅̅̅ =

1

N
∑ ∑(∑ rt

n + Vπ

Tn

t′=t

(st+1
n ) − Vπ(st

n))

Tn

t=1

N

n=1

∇ log Pθ (at
nȁst

n) 

(20) 

Double Deep Q Network (DDQN): to get at the predictable q value 𝑟𝑡  +  𝑄𝜋(𝑠𝑡+1, 𝜋(𝑠𝑡+1)), the 

target network's parameters are first copied from the present network of Q. Utilizing SGD, the training 

𝑞𝜋(𝑠, 𝑎) ← 𝑠, 𝑎 

𝑞𝜋(𝑠′, 𝑎′) ← 𝑎′ 

𝑉𝜋(𝑠′) ← 𝑠′ 

𝑉𝜋(𝑠) ← 𝑠 

r r 
r r 

S

’ 
a 

(a) 
(b) 
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images have been created to minimize the difference among 𝑄𝜋(𝑠𝑡  , 𝜋(𝑠𝑡))& 𝑟𝑡 + 𝑄𝜋(𝑠𝑡+1, 𝜋(𝑠𝑡+1)). 

The state value function (critic) and the DDQN (actor) are combined in actor-critical network topologies. 

In Q -learning, the critic fails to select the course of action; rather, it assesses the actor's quality using 

the total rewards earned from visiting states. The value of the state is represented by  𝑉𝜋(𝑆𝑎) the output 

scalar, when the state is fed to 𝑉𝜋 actor. Equation (21) provides an expression for the PGD (Deep 

Reinforcement Learning and Control Lectures, 2021). 

JPPO
θ′

= Jθ
′
(θ) − βKL(θ, θ′) (21) 

Jθ
′
(θ) = E(st,at)~𝜋

θ′ [
pθ(atȁst)

pθ′(atȁst)
𝐴θ′

(𝑠𝑡 , 𝑎𝑡)] 
(22) 

Here, β is employed as the regularizer to manage the variance and the behavior change is represented 

by the KL divergence of θ, θ′. Asynchronous computing has multiple independent workers, each with a 

unique weight, interacting in parallel with an exact copy of the environment. The employees receive 

training concurrently, and they update the global at a "asynchronous" time interval that contains shared 

parameters on a regular basis. The global changes it after receiving a worker's update, and the worker 

updates it afterwards. After every update, the workers synchronize with the newly updated global and 

adjust their parameters with it. 

When every worker adjusts weights in accordance with the global, parameter data passes among 

workers and from workers to the global. There are 5 stages in the cycle process of training. At first, (1) 

every worker reset to the global network. (2) They then interact with their own environments, (3) 

determine values and policy losses, (4) determine gradients from losses, average their gradients across 

all workers for updating the global NN weights, and (5) repeat steps 1 through 5 until convergence or 

the time maximum is attained. Neural net images are created for every worker based on the batches in 

the database, (𝑠𝑡1𝑎𝑡1  𝑠𝑡1+1, 𝑠𝑡𝑖  𝑎𝑡𝑖  𝑠𝑡𝑖+1
. . ..). Then (state value NN (θυ′ for worker, θvfor global). and 

(parameter θ′for worker, θ for global) are the states that are then inputted into the policy NN 

The NN approximator of the policy function is trained using the variance among the estimated 

(VF)Value Function 𝑅𝑡 and the real VF 𝑉𝑡 (advantage value 𝐴𝑡  =  𝑅𝑡  – 𝑉𝑡). If a positive advantage is 

obtained, raise the likelihood of action 𝑎𝑡
𝑛; if a negative advantage is obtained, lower that probability. 

Then, each worker submits its updated θ′  and θυ′parameters to the global. To avoid miscalculating 

certain steps, the derivative to the global parameter 𝑑𝜃, 𝑑𝜃υ is determined on the average of every work 

θ′ , θυ′ . To promote exploration and avoid early suboptimal convergence, the entropy of policy 

(𝐻 (𝜋(𝑎𝑗|𝑠𝑗; 𝜃
′)) is included. The following is the formalization of the Value function in RL, or 𝑉𝜋, 

performance:  

𝑉𝜋 = ∑wπ(s)

s∈S

∑ R(s, a)π(s, a)
a∈A

 (23)  

Here, the cumulative reward beginning from state s and action a can be represented as R(s,a), and the 

likelihood of the entire structure in the states can be denoted as wπ(s). The expected cumulative reward 

after π is the performance. The network that received the action and current state as inputs and delivered 

the state value from the episode as the whole was identified as 𝑉𝜋. The most effective performances 𝜋∗, 

denoted by 𝜋∗  =  𝑎𝑟𝑔𝑚𝑎𝑥𝜋𝑉𝜋, are satisfied by the optimal performance. Constant improvement of π 

results from experience-based learning. 
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Classifier Using DARL System 

To determine the class score, the classifier module combines the characteristics of the input image by 

the class features. Based on this score, the class data is predicted. The image feature obtained from the 

IE system was multiplied by the class feature supplied using the CE system by the classifier system. The 

TE module extracts batch images using 𝑥′ ∈ ℝ𝑛×𝐷image features, while n is the number of batch photos. 

Class features 𝑝 ∈ ℝ𝑡×𝑄, and t is the total amount of classes, are obtained by the CE module.  

Initially, 2 linear blocks are employed to map the class features and image features to similar size C. 

Next, to obtain the score 𝑧 ∈ ℝ𝑛×𝑡for each image that belongs to a class, the classifier module combines 

the image features and the class features using a linear transformation. Ultimately, the labeling of the 

batch photos is obtained by using the argmax score. The classifier's operation can be mathematically 

stated as follows: 

𝑧 = f(x′,Wx′ ,Wp, p) = (x′Wx′)(pWp)
T

 (24) 

Here, two trainable weight matrices of linear block are Wp ∈ ℝF×C and Wx′ ∈ ℝD×C. The ZS-DARL 

algorithm determines the loss and BP (Back Propagation) throughout the training period. The 

conventional CE loss is employed through the loss function,  

𝐿(𝑦, 𝑧) = −∑yi

t

i=1

log pi = − log
ezy

∑ ezyi𝑦𝑖∈[𝑡]
 

(25) 

Here, the total amount of classes can be denoted as t, the image's class label is y, the class score is 

zy, and zyi
is the class score. In order to maximize the ZS-DARL framework minimize equation (25) 

instead. As usual, 𝑎𝑟𝑔𝑚𝑎𝑥𝑦∈[𝑡] 𝑧 is expected to occur during the testing period. 

4 Results and Discussion 

A single NVIDIA RTX2080S GPU, 16GB of RAM, Intel Core i7-9700 CPU, Windows 10 OS, and the 

YOLO technology are all included in the test environment. The simulation involves adjusting the image 

size to 224 × 224 pixels, employing the Adam optimization technique to improve the framework, setting 

the learning rate to 0.0001, training the framework over 100 epochs utilizing a mini-batch of 10. In this 

case, consider 30% of the information as the test set and 70% of the information as the train set from 

Rail-5k and RSDDs. The study chooses precision, recall, F-measure, accuracy, and additional variables 

to contrast the algorithm with in order to appropriately assess its impact.  

Equation (26) displays the percentage of actual positive images amongst those determined as positive 

images, defines precision. 

Precision =
TP

TP +  FP
 

(26) 

Equation (27) defines recall, shows the percentage of positive instance in the image are properly 

recognized. 

Recall =
TP

TP +  FN
 

(27) 

It is insufficient to evaluate the model accuracy solely on recall or precision. As a result, the                         

F-measure was created to take recall and precision into account simultaneously. Equation (28), which 

defines the F-measure, is an example.  
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F − Measure =  2 × 
Precision · Recall

 Precision +  Recall
 

(28) 

Typically, accuracy is employed to assess an algorithm global accuracy, that can't include too much 

data or provide a complete assessment of the model. Equation (29) provides the explanation,  

Accuracy =  
TP + TN

TP +  TN +  FP +  FN 
 

(29) 

True Positive (TP) denoted a properly determined positive instance; True Negative (TN) represented 

a precisely discovered negative instance; False Positive (FP) represented a misidentified negative 

instance; and False Negative (FN) represented a mistakenly discovered positive instance for a 

misidentified negative instance.  Accuracy, recall, precision, and f-measure for RTFD and RSDDs 

among defect detection methods are displayed in Figures 6-9. CTFM (Yu et al., 2018), Deep 

Convolutional Neural Network (DCNN) (Liang et al., 2018), R-CNN (Sekar & Perumal, 2021), Zero 

Shot-Semi Supervised Fuzzy Class Knowledge Graph (ZS-SSFCKG), and proposed system with their 

evaluation metrics are discussed in Table 1.   

Table 1: Comparative Results Analysis for Datasets 

DATASETS  METRICS CTFM DCNN R-CNN ZS-SSFCKG ZS-DARL 

RTFD PRECISION (%) 78.55 80.42 82.19 84.74 90.22 

RECALL (%) 79.84 82.15 85.47 87.15 92.52 

F-MEASURE (%) 79.19 81.28 83.79 85.93 91.35 

ACCURACY (%) 78.51 80.86 82.33 84.87 92.47 

RSDDs PRECISION (%) 76.18 78.53 82.47 85.25 91.71 

RECALL (%) 78.37 80.31 84.66 86.58 93.15 

F-MEASURE (%) 77.26 79.41 83.55 85.90 92.42 

ACCURACY (%) 79.85 82.59 85.82 87.61 93.88 

 

 

Figure 6: Precision vs. Zs based on Kg Techniques 

Figure 6 shows the precision comparison of methods with 2 datasets. From the graph, it can be 

observed that the proposed system produces superior surface defect identification of 91.71%, previous 

approaches is 76.18%, 78.53%, 82.47% and 85.25 for RSDDs. Other methods like CTFM, DCNN,                   

R-CNN and ZS-SSFCKG had lesser results of 15.53%, 13.18%, 9.24%, and 6.46% for RSDDs. 
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Proposed system utilizes the RL, and VAE, making it a superior option for the prompt detection of 

surface defects. 

 

Figure 7: Recall vs. ZS based on Kg Techniques  

Figure 7, this graph clarifies the recall comparison of methods with 2 datasets. From the graph, it can 

be observed that the proposed system produces superior surface defect identification is 93.15%, the 

previous approaches is 78.37%, 80.31%, 84.66% and 86.58% for RSDDs. Other methods like CTFM, 

DCNN, R-CNN and ZS-SSFCKG had lesser results of 14.78%, 12.84%, 8.49%, and 6.57% for RSDDs. 

CTFM, DCNN, R-CNN and ZS-SSFCKG had lesser results of 79.84%, 82.15%, 85.47% and 87.15% 

for RTFD. From the railway surface defect dataset, the proposed system has the largest recall due of 

optimal detection of objects from the railway images using the VAE, and then it has been correctly 

classified using LA. 

 

Figure 8: F-measure vs. ZS based on Kg Techniques 

Figure 8, this graph clarifies the F-measure comparison of methods with 2 datasets. It shows that the 

proposed system produces best results of 92.42%, existing methods have given lowest results of 76.08%, 

77.26%, 79.41%, 83.55% and 85.90% for RSDDs. Other methods like CTFM, DCNN, R-CNN and              

ZS-SSFCKG had lesser results of 15.16%, 13.01%, 8.87%, and 6.52% for RSDDs. CTFM, DCNN, R-

CNN and ZS-SSFCKG have lesser results of 79.19%, 81.28%, 83.79% and 85.93% for RTFD. It is 

found that the results of the proposed system provide a Divergence Asynchronous Reinforcement 
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Learning (DARL) with reduced overfitting and consistently improving learning from the experience 

than the existing methods. 

 

Figure 9: Accuracy vs. ZS based on Kg Techniques 

Figure 9, this graph clarifies the accuracy comparison of methods with 2 datasets. Proposed system 

produces superior results of 92.47%, previous approaches have given results of 79.85%, 82.59%, 

85.82% and 87.61% for RSDDs. Other methods like CTFM, DCNN, R-CNN and ZS-SSFCKG had 

lesser results of 14.03%, 11.29%, 8.06%, and 6.27% for RSDDs. CTFM, DCNN, R-CNN and                           

ZS-SSFCKG have lesser results of 78.51%, 80.86%, 82.33% and 84.87% for RTFD. Proposed system 

was developed to increase detection rate due to object detection of rail track cracks via VAM, and LA 

quickly detects the cracks which led the detection accuracy gets improved than the other methods. 

5 Conclusion and Future Work  

RSDD is crucial to make certain the smooth, secure, and quick function of trains. In this paper, 

Variational Autoencoder Diffusion Model (VAEDM) is introduced for multi-crack object detection. 

VAEDM is designed to learn target defects by progressively denoising an image with normal 

distribution. VAEDM model is introduced for learning the distributions of latent features depends on 

the mean values and their variances. VAEDM is worked based on the stochastic manner. ZS-DARL 

framework, class encoder system includes the Learning Agent (LA) Construction, word embedding, and 

DARL system. The defect LA is generated utilizing the surface defect class data provided by the DARL 

function. The agents in the generated DARL have their features prepared by the word embedding 

function. When agent properties and the defect LA are supplied into the DARL encoder part it may 

acquire every agent visual representation. The asynchronous DARL systems consist of multiple 

independent workers, each having a weight and interacting together with an exact copy of the 

environment. The workers receive asynchronous training in parallel and update asynchronously on a 

regular basis according to their pace of learning for crack detection. Extensive testing on reference 

datasets like RTFD and RSDDs demonstrates the efficacy of the suggested methodology. F-measure, 

accuracy, precision, and recall are employed for estimating the performance of RSDD techniques. 

Subsequent investigations will examine the identification of RSD in intricate settings and enhance the 

network model's lightweight design while preserving detection precision. Utilize your deeper 
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understanding of DL in the future to enhance the RSDD algorithm by taking defect segmentation under 

consideration. 
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