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Abstract 

Software Bill of Materials (SBOM), which is a standardized format for the machine-readable list 

of components included in software, is a key technology for addressing software supply chain 

attacks. Since Docker containers, now prevalent for software distribution and deployment, 

typically consists of hundreds of packages, the use of automation tools to generate their SBOMs is 

recommended. Currently, several OSS-based SBOM generation tools are available, playing 

indispensable roles in automating SBOM utilization. Generally, the tools make use of information 

from several package managers and databases of popular software to create SBOMs from the 

container images. On the other hand, some Docker containers include packages that were 

manually downloaded and installed by the authors without the package managers. Despite this, 

few studies have been conducted on how pervasive manually installed packages are and how 

accurate SBOM generation tools are in identifying them. To investigate the issue, we collected 

3500+ popular Docker container images from the Docker Hub and assessed the accuracy of the 

SBOMs generated by two prominent OSS tools. The result showed 3000+ manual installations of 

800+ packages that are either downloaded with Linux commands or copied directly from host 

systems. 51% of the containers included one or more manually installed packages. We found that 

SBOM tools can overlook 30-70% of the installations, which include both recent and outdated 

versions of major software and many niche or specialized tools. In addition, at least 27.7% of the 

manually installed packages were executed or read using the default settings of the Docker 

containers, and neither of the tool identified 22.7% of them, including those with known CVE 

vulnerabilities. Finally, the results revealed that at least 1.1% of the installations are overlooked by 

the generators, although actively used and associated with known vulnerabilities.  

Keywords: SBOM, Vulnerability Management, Docker. 

1 Introduction 

The recent increase in cyberattacks targeting software supply chains, such as SolarWinds (US 

Government Accountability Office, 2021), (Kasya - CISA, 2021a), and (log4j - CISA, 2021b) 

demonstrates the need for software transparency because these attacks exploit vulnerable components 
 

Journal of Internet Services and Information Security (JISIS), volume: 14, number: 3 (August), pp. 191-212. 

DOI: 10.58346/JISIS.2024.I3.011 

*Corresponding author: Security & Trust Research Department, Hitachi, ltd., - Tokyo, Japan. 



Understanding the Effectiveness of SBOM Generation Tools 

for Manually Installed Packages in Docker Containers 
                                                       Nobutaka Kawaguchi et al. 

 

192 

unknowingly included in the software used in the victim organizations. The software Bill of Materials 

(SBOM) (United States Department of Commerce, 2021), which is a kind of machine-readable 

ingredient list of software, is the key technology for accurately checking whether any known 

vulnerable components have been mixed in the software through the software supply chain. With 

strong governmental initiatives, SBOM has become prevalent in several industries. 

Because software may contain hundreds of components (e.g., packages) and the installed software 

does not always come with its SBOM, the automated creation of SBOM is essential for software users 

as wells as developers (Sundara Bala Murugan et al., 2024). Accordingly, several SBOM generators 

that inspect the target software and create their SBOM have been developed and widely utilized (Arora 

et al., 2022). However, the accuracy of the SBOM by the tools has not been extensively investigated or 

discussed. The generators usually rely on package managers (both OS package managers such as             

apt-get for Debian OS and application managers such as pip for python) to collect software 

information in a system (Nadgowada & Luan, 2021). Accordingly, it is uncertain whether they can also 

identify packages installed manually without the package managers.  

The use of SBOM tools is essential, especially when handling intricate software composed of 

myriad layered components (Viticchié et al., 2018). Software containers are among the bulkiest 

software categories, as they typically include several applications, their dependent libraries, and             

OS-related files. Given the prevalence of containers today, it is a feasible research question to ask how 

effectively SBOM tools automate the generation of SBOMs from containers. 

Thus, this study focuses on the accuracy of the SBOM of Docker containers created by two 

prominent open-source SBOM generators. Dockers are among the most popular platforms for software 

distribution, and they suffer from several vulnerability issues (Liu et al., 2020). We collected more 

than 3500 popular Docker containers from a prominent repository and analyzed how accurately the 

SBOM generators identified packages that were installed manually using download commands (e.g., 

wget and curl) or the COPY operation during the Docker image-build process (Surendar et al., 2024). 

As a result, we found that more than 50% of the containers include one or more manually installed 

packages. Our analysis reveals that even a generator equipped with a package signature database 

overlooks 30% of the installation of these packages, some of which have known vulnerabilities, while 

the other generator, which seems to depend on the package managers solely, works worse, overlooking 

more than 70% of the installation. We also found that at least 27.7% of the manually installed 

packages were executed or read when the containers were run without any arguments or with dummy 

arguments forged by generative AI, and 22.7% of their existences were overlooked by the generators. 

Because actively used packages (i.e., packages read or executed when the container runs) are more 

susceptible to exploits than dormant ones, overlooking of these packages could impose critical risks to 

the container users. Moreover, the experiments revealed that at least 1.1% of all installations are 

overlooked, although actively used and associated with one or more CVEs.  

The major contributions of this paper are as follows: 

1. This is the first study regarding the performance of SBOM generators to create SBOMs of 

manually installed packages in Docker containers using a large-scale dataset. 

2. The analysis results revealed the accuracy of the SBOM generators with the five viewpoints; (i) 

overlooked rate for manually installation packages, (ii) overlooked rate for containers with 

different number of the packages, (iii) overlooked rate for the actively used packages, (iv) high 

risk installations of software associated with one or more CVEs, (v) the difference of performance 

in the two prominent generators. 
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3. This study demonstrates the usefulness of generative AI in supporting the SBOM analysis; 

extraction of manually installed packages, and forging of dummy arguments. 

To the best of our knowledge, this is the first study to evaluate the accuracy of prominent SBOM 

generators for manually installed packages in Docker containers with a large-scale dataset, and to 

uncover the hidden risks. This research outcome will help both software suppliers and consumers 

understand the limitations of the current tools and their wise usage. 

The remainder of this paper is organized as follows. Section 2 introduces the background of the 

study. Section 3 explains the analysis pipeline, and Section 4 presents the results. Sections 5 and 6 

discuss the recommendations for Docker container developers and users and the limitations of our 

work, respectively. Section 7 discusses the related works, and Section 8 concludes the paper. 

2 Background 

In contemporary digital landscapes, the software supply chain is increasingly vulnerable to several 

threats, particularly through continuous integration and deployment (CI/CD) pipelines (Ladisa et al., 

2023). Accordingly, various frameworks and guidelines have been published to render CI/CD 

pipelines more robust to threats (NIST, 2015; NIST, 2021; Linux Foundation, 2022a). SBOM is the 

core technology in these efforts. SBOM is a machine-readable format that specifies packages and their 

attributes (e.g., version, supplier name, dependency, license) included in software (United States 

Department of Commerce, 2021). SBOM allows both software suppliers and consumers to understand 

what consists of their applications and systems in a more transparent manner than ever before, which 

will, in turn, mitigate the fatigue of security operators in identifying and prioritizing vulnerabilities in 

their environments (Smale et al., 2023; Hamed et al., 2023). While it is not a mandatory option, SBOM 

usually includes CPEs (NIST, n.d.a) and Purls (Package-url, n.d.): identifiers for packages and 

versions, which makes it easy to discover vulnerable packages in software through matching with 

vulnerability databases, such as NVD (NIST, n.d.b). 

The CISA has identified six types of SBOM to cover the software lifecycle spanning both suppliers 

and consumers (e.g., Build SBOM on the supplier side, Runtime SBOM on the consumer side) (CISA, 

2023a). The use of SBOM has been strongly supported by some governments. Currently, Executive 

Order 14028 (US Government, 2021) in the U.S. and the Cyber Resilience Act (CRA) (EU, n.d.) in the 

EU request software suppliers to provide consumers with their SBOMs. The adaptation of SBOM is 

also underway in several sectors such as healthcare, automotive, energy, IT, and finance (CISA, 

2023b; Linux Foundation, 2022b).   

There are several issues with the effective use of SBOM, including its management and privacy 

(Xia, 2023). One of the primary issues is how to create SBOM in the first place. Although there is no 

restrictive format specification for SBOM, some SBOM formats, such as SPDX (Linux Foundation, 

2023), CycloneDX (OWASP, 2023), and SWID (NIST, 2018), have been widely used. Several open-

source and commercialized SBOM generators have been developed to support these formats (Arora et 

al., 2022; Anchor, n.d.a; Aquasecurity n.d.; Snyk, n.d.). On the other hand, however, it is still uncertain 

how precise and accurate the SBOMs created by the generators are. While previous studies have 

revealed that some generators may overlook a substantial fraction of software components (Balliu et 

al., 2023; Heiderup & Plate, 2023), their research coverage is limited to a small number of software 

projects.  

This study focuses on the accuracy of SBOM for a wide range of Docker containers. Docker is a 

containerization technology for building, distributing, and running software applications (Kim et al., 
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2023). While Docker containers are becoming increasingly prevalent in the enterprise systems (Haque 

& Babar 2022), they occasionally include vulnerable packages that have been exploited by cyber-

attacks (Liu et al., 2020). Currently, several SBOM generators can generate SBOMs for packages 

installed in the container images. However, they often rely on package managers to collect the 

packages inside the images (Nadgowada & Luan, 2021). Thus, these tools may overlook packages 

installed with file download commands instead of package managers. For example, package managers 

for C/C++ are less prevalent compared to more modern languages (Tang et al., 2022), which might 

result in the manual installation of binary codes written in C/C++. Despite this, there have been few 

works regarding this research area. For example, although the work (Torres-Arias et al., 2023) 

compares the primary statistics of SBOMs of Docker containers generated by different OSS tools, it 

lacks the deep analysis on the overlooked packages by those tools. 

3 Analysis Methodology 

Manually Installed Packages 

This section describes the analysis methodology used to evaluate the accuracy of open-source SBOM 

generators in creating SBOMs for packages manually installed in Docker containers.  

As mentioned before, manually installed packages are referred to as those that are installed in the 

container environment without using OS package managers (e.g., apt-get install, apk add, yum install) 

or application managers (e.g., pip install, npm install) when their images are built. The installation can 

be performed by either downloading archives from specific URLs using Linux commands (e.g., wget, 

curl, git) or the COPY operation specified in the Docker files.  

As mentioned in (Nadgowada & Luan, 2021), most SBOM generators are primarily dependent on 

package managers; therefore, it may seem challenging for them to identify manually installed 

packages accurately. However, even when a package is copied without using package managers, the 

archive files often leave artifacts specific to the managers (e.g., package.json for npm and 

requirement.txt for pip), which may help generators identify the package names and versions. In 

addition, copied or downloaded packages can be registered with managers (e.g., dpkg -i xxx.dpkg). 

Moreover, some generators are equipped with signature databases for major software applications 

(Anchor, 2022). Thus, it is not obvious whether a manually installed package can be identified using a 

given SBOM generator. 

We also put special focus on manually installed packages that are either executed or read when the 

containers are launched. As the introduction of Runtime SBOM (CISA, 2021a) indicates, such ‘active’ 

packages require more attention than dormant packages because they can impose more risks if 

attackers try to exploit their vulnerabilities. One issue for monitoring the containers activities is that 

some containers require specific parameters to be set to work as originally intended. In this experiment 

we monitor the behavior of the containers in their ‘default’ state with no parameters. If the execution 

terminates with an error, we feed dummy parameters forged by the Generative AI to expand the 

analysis coverage. We consider that this approach provides a primary overview of the risks of 

manually installed and actively used packages. 

Analysis Pipeline 

Figure 1 shows the pipeline used in the analysis. First, it downloads container images from the Docker 

Hub (Docker Hub, n.d.), the most popular Docker repository. The downloaded container images 
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undergo the extraction of their manually installed packages, SBOM generation by two SBOM 

generators, and monitoring of the executed/read packages. The pipeline then identifies manually 

installed packages that either of the generators (i.e., SG-X and SG-Y) overlooked by checking their 

absence in the SBOMs. Additionally, the pipeline runs the containers and monitors packages that are 

executed or read during the run. Then, the overlooked packages are matched with the monitored logs 

and vulnerability databases to identify high-risk packages: those that are overlooked, actively used, 

and vulnerable.  

We designed the pipeline for handling thousands of containers in an automated manner. However, 

owing to the lack of global and comprehensive identifiers for software packages (CISA, 2023c), this 

process is not error-free. Thus, we manually verified the results and corrected mismatches after the 

pipeline completes. The verification process includes searches on GitHub and freeware hosting sites 

and the analysis of Docker images and containers. In particular, we made a lot of effort to avoid 

underestimating the performance of the SBOM generators. This labor-intensive task required more 

than 100 hours of working time.  

Note that the aim of this research is not to evaluate exactly how the strings of package names from 

generators conform to CPE or Purl. Instead, we focus on measuring how accurately the generators 

identify the existence of each manually installed package inside the containers while allowing some 

inconsistencies in the naming convention. 

DockerHub

Docker Container
Dataset

Gen AI

Docker Runtime

Manually 
installed 
packages

Executed files
Read files

SG-X/SG-Y
SBOM

Packages
overlooked 
by SG-X/Y

Packages
overlooked

and 
executed/read

SG-X/Y

 

Figure 1: Analysis Pipeline of Manually Installed Packages from Docker Hub 

Dataset 

We first crawled the Docker Hub using the 16 keywords shown in List 1 to create a list of 5,000                

top-pulled container images in Nov., 2023. The keywords were chosen to cover popular web 

applications, software development environments, and security tools. The pulling count for an image is 

the sum of all the tags. Then, the pipeline downloaded container images that had ‘:latest’ tags in Nov. 

and Dec. 2023. The dataset included 3,514 images. The most pulled images were Python, Redis, 

Postgres, Node.js, and Httpd. According to their manifests, the images have been created between 

2014 and 2023; and 34% of them are in 2023. Further details are provided in the following sections. 

List 1: Keywords for Docker Hub Search 

cache, language, messaging, runtime, cd, load_balancer, monitoring, security, ci, logging, network, storage, 

content_management, orchestration, web_server, database, message_broker, proxy 
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Extraction of Manually Installed Packages 

The pipeline extracts manually installed packages from the output of the ‘docker history’ command, 

which shows the configuration history of an image based on the metadata of the image layers. Figure 2 

shows an example of this command. In this case, the wget manually downloads the Redis package 

from a URL specified by environmental parameters.  

Although there are several clues to identifying the names and the versions of the packages, it is not 

easy to design one-size-fits-all rules to extract them from various container images. Thus, the pipeline 

uses generative AI to extract manually installed packages. More specifically, it feeds OpenAI (OpenAI, 

n.d.) the history data and environmental parameters from Docker image metadata and then obtains a 

list of names, versions, and directory paths of the manually installed packages. List 2 shows the query 

prompt and List 3 is an example of response about the Redis container. Directory paths were used for 

the human verification process, as previously mentioned. As shown in List 3, a container can include 

more than one package installed manually. 

When package names and versions are embedded in the download URLs or environmental values, 

OpenAI generally works well. But it can fail to identify package versions when the URLs only include 

ambiguous words (e.g., ‘latest,’ ‘stable’) to express the version information. 

 

Figure 2: A Sample of Manually Installed Packages Installations 

List 2: Query to Extract Manually Installed Packages 

   Below are (i) environmental values from ‘docker inspect' and (ii) history from 'docker history' command. 

   Could you please answer the packages that were installed without using package managers? 

        ----------------- 

    (i) Environmental values from 'docker inspect': {env}        

    (ii) image history from 'docker history': {history} 

       ------------------- 

   Return the answer as a JSON Object. If there is no package installed without using package managers, 

just return [] 

   The answer can include more than one element. 

   Each element in the answer has the following attributes. 

     (1)'PackageName’, name of a package installed without using package managers,  

     (2)'PackageVersion', the version of the package, 

     (3)'DirectoryPath', the directory where the package is finally copied. 

 

   Examples of expected answers: 

    [  

{{"PackageName":"abc","PackageVersion":2.1,"DirectoryPath":"/usr/lib/abc/"}},        

{{"PackageName":"Dix","PackageVersion":4.1,"DirectoryPath":"/usr/local/bin/"}}     

    ] 

   Note that, such packages are usually downloaded from the Internet using 'wget', 'curl' or other 

commands. 
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List 3: Reply from Generative AI for Query about Manually Installed Packages in Redis 

[ 

    {"PackageName":"gosu","PackageVersion":"1.17", 

      "DirectoryPath":"/usr/local/bin/"}, 

    {"PackageName":"redis","PackageVersion":"7.2.4", 

     "DirectoryPath":"/usr/local/bin/"} 

] 

SBOM Generation 

In this study, we used two open-source SBOM generators to create SBOMs for the downloaded 

containers, denoted as SG-X and SG-Y, respectively. Both are prominent tools that receive more than 

5k stars on GitHub. To avoid unexpected consequences, we will not disclose their names in this paper. 

We use their latest versions as of Nov. 2023. Both the tools support several SBOM formats, and we 

used SPDX for this evaluation. In SPDX, a package name and the version are described in 

‘PackageName’ and ‘PackageVersion’ attributes. We use the tools with basic options, without 

customizing their configuration files. It is known that SG-X is equipped with a signature database of 

popular packages. The signature database is maintained by SG-X developers, and the users get the 

update by installing the latest version. 

Execution of Docker Containers 

In this phase, the pipeline executes the downloaded containers with ‘docker run’ command, and their 

executed or read files are monitored by the pipeline using eBPF (eBPF, n.d.). Some containers 

immediately stop running if the required parameters are missing, resulting in low coverage of actively 

used packages. However, it will require a prohibitive amount of time to manually check and craft 

parameters when handling thousands of containers.  

To streamline the analysis while increasing the monitoring coverage, we make use of the 

observation that the error message from a container often includes instructions to run it correctly. The 

monitoring process uses a two-step approach. First, a container is run without any parameters. If the 

container crashes with an error message, the pipeline feeds the message to Generative AI (we again 

use OpenAI) to forge dummy parameter values based on the message. The container was then run 

again with the forged parameters. Details of this approach are described in (Kawaguchi & Hart, 2024). 

Identifying Overlooked Packages 

When a manually installed package does not match any components included in the corresponding 

SBOM, the package is considered overlooked by the generator. This process involves both package 

name matching and package version matching as follows. 

(1) Package Name Matching 

The pipeline performs matching between two package names n1 and n2, one from the manually 

installed packages and the other from SBOM. First, it divides n1 and n2 into tokens according to 

certain delimiters (‘/’, ‘-, ‘ ‘_’) as they are sometimes used to concatenate software names and other 

information such as developer names. It then determines that n1 and n2 possibly point to the same 

package if the case-insensitive normalized Levenshtein distance (Yujian & Bo, 2007) between any 

tokens and the original tokens from the two strings is shorter a threshold (we set it to 0.2).  



Understanding the Effectiveness of SBOM Generation Tools 

for Manually Installed Packages in Docker Containers 
                                                       Nobutaka Kawaguchi et al. 

 

198 

(2) Package Version Matching 

In contrast to package names, the pipeline uses exact numerical matching for the package versions. If 

version strings of both an extracted manually installed package and an entry in the SBOM follow the 

semantic versioning (Preston-Werner T., n.d.), the pipeline only checks the version core (i.e., major, 

minor, and patch versions) for comparison, because responses from the generative AI often do not 

include further information. If either of the version strings does not follow the semantic versioning, the 

pipeline performs string matchings while ignoring substrings after ‘-‘ or ‘_’ in the strings.  

Given a manually installed package P, the pipeline concludes that P is a ‘overlooked package’ by 

an SBOM generator if the corresponding SBOM does not include an entry that matches its name and 

version. If the SBOM includes one or more entries matched with P, P is regarded as a ‘matched 

package’. 

(3) Manual Verification and Correction 

As mentioned before, we validated both ‘overlooked packages’ and ‘matched packages’ by hand and 

corrected the results if needed. As to the package name, we dealt with synonyms such as ‘java’ and 

‘jdk’, and several unexpected inconsistencies such as ‘aliyun-python-sdk-iot’ and ‘aliyunsdkiot_py2.’ 

Regarding the package version, the outcomes of manually installed package extraction sometimes 

lack valid version strings as mentioned above. In this case, we first try to identify the exact version by 

searching the internet. If this attempt fails, we presume that the versions from the generators were 

correct, and the decisions are made based only on the package name. In addition, if the 

‘PackageVersion’ of a package in SBOMs is expressed with the git source control version (CVE 

Project, n.d.) instead of the semantic versioning, we check the GitHub repository to address the 

corresponding semantic versioning if applicable. 

Identifying Executed/Read Packages 

The pipeline employs a heuristic approach that uses clues from file paths and container image 

metadata to identify the name and version of a package for a read or executed file. A detailed 

discussion is provided in (Kawaguchi & Hart, 2024). The matching approach between the 

executed/read packages and overlooked packages is the same as that in the previous section. 

4 Analysis Results 

This section elaborates on the analysis results for the 3,514 container images from the Docker Hub. 

Manually Installed Packages 

Out of all downloaded containers, the pipeline identified that 1,799 (51.2%) containers included one or 

more manually installed packages. The total number of extracted installations was 3,327 over 876 

unique package names with different versions.  

Our validation by hand found that the responses from the generative AI for the 779 installations 

lacked valid version strings, and we then resorted to manual inspection, as mentioned before. 

Moreover, we found 45 installations inappropriate for evaluation use; we were not able to identify 

exact package names for some of them, and the others are those that were uninstalled during the 
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container build process so that SBOM generators did not identify them. These 45 entries are excluded 

from the further evaluation. 

Figure 3 shows the distribution of the number of packages manually installed in the container. 

Approximately 85% of the containers had only one or two packages. By contrast, the four containers 

included more than 15 packages. This distribution has long-tailed properties.  

Figure 4 shows the most frequently installed package names across the different versions. The top 

four packages (Node.js, Yarn, Python, and OpenJDK) accounted for 29.6% of all the installations. Six 

out of the top 10 packages are relevant to program runtime environments, and they earn more than 19k 

starts on GitHub. This suggests that while most OS package managers support such fundamental 

software, container producers still tend to install them manually from source codes. On the other hand, 

88.5% of the packages were installed only three or fewer times for more than 3000 containers. This 

long-tail property indicates the difficulty of identifying manually installed packages. In addition, we 

found that manual installation was prevalent even with major packages. Regarding Node.js, our dataset 

included at least 576 installations in total, and 320 of which are manually installed ones, whereas the 

others (=256) were through OS package managers, such as apt. 

The installed versions varied among the same package names. Figure 5 shows the major version 

distributions of Node.js, OpenJDK and Redis. The different versions of Node.js were widely 

distributed between the ver.0 and 21.0. On the other hand, OpenJDK installations were concentrated in 

specific versions: 8u, 11, and 17. Regarding Redis, newer versions had more installations than earlier 

ones. 
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Figure 3: Distribution of the Number of Manually Installed Packages 
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Figure 4: Installation Ranking of Manually Installed Package Names 
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Figure 5: Version Variations of Manually Installed Package Names 

Overlooked Packages 

Table 1 lists the identification results of the two SBOM generators. Since the generators encountered 

technical issues while analyzing some container images, the total numbers here are different from each 

other. SG-X identified 60% of the installations of manually installed packages, whereas SG-Y’s 

identification rate was 28%. The two generators overlooked 37% and 72% of the manual installations 
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respectively. The results included those whose package versions were incorrectly identified. For some 

packages, the generators successfully identified their names but returned ‘unknown’ for their versions. 

The following statistics in this paper classified these cases into ‘overlooked’ categories. These results 

show that the identification performance can vary between the generators. SG-X has signature 

databases for major software, which contributes to expanding the coverage, whereas SG-Y seems to 

depend on OS/application package managers. When paying attention to the number of unique package 

names, they overlooked more than 50% of the unique packages, and their gap was not as wide as that 

of overlooked installations. This indicates the signature database in SG-X focuses on a small number 

of major software that account for many installations.  

Figure 6 shows the unique packages that were overlooked the most by the two generators. SG-X 

failed to identify gosu, the Go language implementation of the sudo command. It also overlooked 

certain docker-related packages. Notably, as Figure 5 shows, some early versions of Node.js (≤ 6.0) 

and OpenJDK (8u) were not identified. SG-X relies on signature databases, and it seems that 

signature-based discovery for the early versions is not as thorough as that for the latest versions, 

although some containers keep using them. Also, SG-X failed to identify the latest versions of some 

prominent packages. For example, it overlooked ver.7.2.3 of Redis, which was the latest version at the 

time of this experiment, while it identified versions earlier than 7.0.0. In addition, the plot of the 

cumulative ratio shows the long-tailed property. Notably, 438 overlooked unique package names, 

which accounts for 88%, were installed only three or less times for the 3500+ containers. This 

unreliable identification results demonstrate the challenges signature-based approaches face. 

Additionally, SG-X failed to identify the dotnet runtime and aspnetcore packages for Linux.  

On the other hand, SG-Y, which relies more strongly on package managers, was significantly less 

accurate than SG-X. It failed to identify all the versions of major software (e.g., Node.js, python3 

runtime, OpenJDK, go runtime, and ruby runtime). Although the results seem to discourage the use of 

SG-Y, it still worked better than SG-X for certain packages. For instance, SG-Y successfully identified 

the dot-net runtime and aspnetcore overlooked by SG-X. We discuss the details later. These results 

indicate that neither of the generators completely outperforms the other, and it is important to wisely 

use both of them depending on the situation to deal with manually installed packages. 

The comparison between Figure 4 and Figure 6 shows that while SG-X identified eight out of the 

top 10 manually installed packages, SG-Y identified only two of them. These results corroborate that 

signature databases are still effective in covering the major software. 

We also found that most overlooked packages came from C/C++ binaries, Erlang (e.g., otp), and 

PHP scripts (e.g., php extensions of Memcached and Redis). On the other hand, packages written in 

modern languages such as Java and Python were identified even when they are installed manually. For 

example, SBOM generators successfully identified package names and versions of Java libraries by 

analyzing their metadata in .jar files. In addition, we found that most Go-lang binaries other than gosu 

were successfully identified because the package information is embedded in the binaries.  

Some packages change their main implementation languages at major version updates, which 

affects identification accuracy. For example, Docker-compose changed the main language from 

Python to Go when it transitioned from v1 and v2. While SG-X overlooks their v1 versions, it 

successfully identifies their v2 versions by extracting package information from Go-lang binaries. 

Figure 7 shows the ratio of containers where all the manually installed packages were identified by 

the generators. As expected, this ratio generally decreases as the containers have more packages. On 

the other hand, in SG-X, the ratio graph reached its peak of 0.67 when the number of packages is two. 
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We found that this is attributed to frequently appearing combinations of major packages such as 

Nodejs and Yarn. Both packages are relevant to JavaScript environments and are frequently installed 

concurrently, and SG-X is able to identify both. On the other hand, the identification ratio of SG-Y for 

containers with two packages is only 0.10. These results indicate that the gap in the performance of 

SBOM completeness can widen when handling containers with multiple manually installed packages. 

Figure 8 shows the changes in the ratio of containers that include one or more manually installed 

packages and the ratio of those that include any package(s) overlooked by both generators according to 

the containers’ creation dates. Each bin corresponds to a period of six months. More than one-third of 

the pulled containers come from the year 2023, while the dataset also includes those of 10 years old. 

As this figure shows, none of the two ratios shows significant changes over time. The results are 

contrary to our initial expectation that as cyber security awareness increases, software packages must 

be increasingly maintained through package managers to improve their transparency. One plausible 

reason for the counter intuitive result is that OS package managers, which should offer adequate 

application/library packages for a specific OS, do not cover many relatively niche applications. As 

mentioned before, 88% of all manually installed packages only appear three or fewer times for 3500 

containers, and it would be difficult for the OS package managers to support all of them. This will also 

hold true for the signature database of SBOM generators. 

Table 2 shows a comparison between SG-X and SG-Y for containers that both generators 

successfully create the SBOMs. Combining the two SBOM generators can increase the coverage for 

manually installed packages by 3.4 % compared to the sole use of SG-X. While the improvement 

could be considered marginal, we found that SG-Y can identify aspnetcore and dotnet packages better 

than SG-X. For example, for aspnetcore runtime ver. 3.1.20, SG-X outputs ‘PackageName: 

Microsoft.AspNetCore’ and ‘PackageVersion: 3.100.2021.474242’, while SG-Y outputs 

‘PackageName: Microsoft.AspNetCore.App.Runtime.linux-x64’, and ‘PackageVersion: 3.1.20’. This 

package name from SG-X is a deprecated one and only applicable for versions less than 2.28. In 

addition, the version representation from SG-X resembles a build number, and it does not match the 

common representation for aspnetcore runtime versions (GitHub Advisory Database, 2022). Thus, 

although the output from SG-X could be an approximate representation of the package, it would not 

work well for vulnerability matching. 

Table 1: Identification Performance of SBOM Generators. The Numbers in Parentheses show the 

Ratio to the Total Number of Installations for each SBOM Generator 

 SG-X SG-Y 

Installation whose package name and version are 

correctly identified 

1880(60%) 908(28%) 

Installation whose package version is ‘unknown’ 103(3%) 6(0%) 

Overlooked Installations (including those whose 

package versions are incorrect while the package names 

are correct) 

1175(37%) 2286(72%) 

Unique package names for overlooked installations 497 591 
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Figure 6: Most Overlooked Unique Package Names 
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Figure 7: Ratio of Containers whose All Manually Installed Packages are Identified 
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Table 2: Comparison between two SBOM Generators 

 SG-Y identified SG-Y overlooked 

SG-X identified 839 1040 

SG-X overlooked 64 1213 
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Figure 8: The Ratio of Containers with Manually Installed Packages and Overlooked Packages by both 

Generators Overtime between 2014 and 2023 

Overlooked and Executed / Read Packages 

The monitoring process in the pipeline reveals that 27.7% (i.e. 923 out of the 3327 cases) of manually 

installed packages are either read or executed during the experiment described in Sec. 3., which 

accounts for 227 out of 867 unique package names. Then, 22.7% of the installations of such active 

packages were overlooked by both generators. 

Figure 9 (a) shows the ranking of manually installed packages based on their executed or read 

times. In addition, Figure 9 (b) shows the packages in (a) that are also overlooked by both generators. 

Note that even when a package was executed or read more than once in a container, it was just counted 

once. From the viewpoint of software transparency, the packages listed in Figure 9 (b) will impose 

high risks because they become active when containers are launched while they do not appear in the 

SBOMs. While if a package becomes active or not can depend on specific parameter values, those that 

are read or executed with default or forged parameters will be considered active with most 

configuration settings. Table 3 lists some known vulnerabilities in the packages shown in Figure 9(b). 

This includes both major and relatively niche software in the dataset, and the total number of the 

installations is 37, accounting for 1.1% of the manually installed packages, or the 4.0% of the actively 

used packages. 

With the two-step approach mentioned in Sec. 3., 238 containers were run twice where the second 

run was with parameters forged by generative AI based on error messages from the first run. We found 

that for the 23 containers, the second run yielded more execution and read operations than the first run. 

Eleven of the 23 containers are relevant to database systems (e.g., Postgres, MariaDB, and CouchDB), 
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and setting dummy passwords (e.g., ‘mypassword’) and the authentication methods makes them run 

longer, revealing more packages than the first run.  

We admit that there could be more vulnerable, active, and overlooked packages in the dataset than 

we were able to recognize in this experiment. While we did not successfully run all containers with 

adequate parameters and Table 3 could include more vulnerable packages, the results still demonstrate 

that a substantial number of containers with active and overlooked vulnerable packages are 

downloadable on the Docker Hub.  
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Figure 9: Active and Overlooked Packages 

 

Table 3: Vulnerable Packages that are Overlooked by SBOM Generators and Become Active While 

Containers were Run with Default or Dummy Parameters 

# Package name version # of installations in the dataset Exemplar vulnerabilities. 

1 cachet 2.3.13 3 CVE-2023-43661 

2 consul-template 0.12.2 6 CVE-2022-38149 

3 fluent-bit 0.12.1 1 CVE-2020-35963 

4 grafana 7.2.1 1 CVE-2023-3128 

5 logstash-oss 7.10.2 1 CVE-2021-22138 

6 nats-server 2.2.6 2 CVE-2022-24450 

7 node.js 4.9.1 1 CVE-2018-7158 

8 openjdk 8u312 17 CVE-2023-21967 

9 owncloud 10.0.10 1 CVE-2021-35846 

10 prometheus 1.8.2 2 CVE-2019-3826 

11 rabbitmq 3.10.6 1 CVE-2023-46118 

12 wordpress 4.9.1 1 CVE-2021-44223 

Accuracy of Extraction of the Manually Installed Packages Using Generative AI 

Of the 3327 installations extracted by the approach in List 2, their 779 occurrence lack version 

information, and 45 correspond to either of them; (1) the packages were deleted during the container 

build process (2) the installed files were actually not packages (e.g., a short bash script written by the 



Understanding the Effectiveness of SBOM Generation Tools 

for Manually Installed Packages in Docker Containers 
                                                       Nobutaka Kawaguchi et al. 

 

206 

container author, a configuration file). Thus, the precision of this approach was 98.6% for package 

names, whereas 23.4% of the results required human intervention for the versions.  

Regarding recall, it is difficult to accurately evaluate the score owing to the lack of ground truth in 

our dataset. However, it can be said that our approach covers more packages than conventional ones 

(Majumder et al., 2023; Doan & Jung et al., 2022) which depend on CVEBinTool (intel, n.d.), a 

signature-based package extractor. For example, CVEB in Tool deals with only two of the 12 packages 

listed in Table 3. As of March 2024, CVEBinTool covers 355 unique packages with known 

vulnerabilities, and requires a dedicated setting for each package. In this regard, our approach of using 

generative AI outperformed this tool in terms of scalability and coverage. The combination of our 

approach and the tool could improve both precision and recall, which will be the focus of our future 

work. 

5 Recommendation for Container Producers and Users 

While the objective of SBOM is to cover all packages in the software, the results demonstrate the 

challenge of obtaining a precise SBOM for Docker containers. SBOMs can be generated by container 

image producers and users, and there are recommendations for both sides. 

For Container Producers 

It would be a good practice for container image producers to use package managers as much as 

possible to make the SBOM more accurate. As mentioned in (Tang et al., 2022), package managers 

have not been frequently used for developments with C/C++; however, some modern C/C++ managers 

such as conan (JFrog, n.d.) and vcpkg (Microsoft, n.d.) can work with SBOM generators. Although 

Figure 8 shows that the use of package managers has not become as prevalent as expected, we have 

also observed some progresses recently. For example, while a series of containers for software 

development from CircleCI (e.g., circleci/redis from Docker Hub) manually installed gosu using a 

wget, their successor series (e.g., cimg/redis from Docker Hub (CircleCI, n.d.)) have switched to using 

apt-get for gosu installation, which makes their SBOMs more accurate. 

In addition, when producers generate SBOMs by themselves, they should accurately check 

packages that must be installed according to the dockerfile included in them before delivery to the 

users. Some tools are available for support the verification (Tap8stry, n.d.). 

For Container Users 

Compared with producers, container users have fewer options for their actions. Nevertheless, it is a 

good practice to check whether the corresponding SBOM for a container includes information on 

packages that should be the core function. For example, if the container is used for using Redis server 

but the SBOM does not include the Redis package, which could be a warning sign. 

6 Limitation of this Work 

The containers in our dataset are all from a single repository, the Docker Hub. While the Docker Hub 

is the largest container repository, the trends in manually installed packages could differ in other 

repositories, such as Quay.io (Quay.io, n.d.a) depending on their hosting policies.  
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Most SBOM generators are still in their premature stages and are evolving gradually. While we use 

their snapshots as of November 2023, the result can be changed by updates thereafter. In particular, 

package signature updates could have a substantial impact on the analysis results. 

As mentioned before, we spent a lot of time confirming and correcting the results from our 

pipelines, and the analysis is still not fully automated. Owing to the inconsistencies in package name 

conventions and the lack of universal package identifiers (CISA, 2023c), matching between SBOM 

and vulnerability databases remains a challenging problem. 

Finally, our analysis does not mention the false positives of the SBOM generators (Mayers, 2023). 

The precision and accuracy of SBOMs can be a tradeoff, which will be a part of our future work. 

7 Related Work 

There have been few studies on the evaluation of SBOM generators. Some researchers evaluated the 

precision and accuracy of SBOMs for a few Java-based projects by comparing the ground truths from 

Maven (Balliu et al., 2023; Heiderup & Plate et al., 2023). The results show both the accuracy and 

precision can be lower than 50%. Santiago Torres-Arias compared SBOMs generated by two SBOM 

generators using a dataset of approximately 700 popular containers (Torres-Arias et al., 2023). The 

results show substantial differences in the number of packages between SBOMs from different 

generators. These studies are focused on specific software projects or primary statistics of SBOMs, 

and did not study the identification accuracy of manually installed packages for a large-scale dataset. 

Note that the two SBOM generators in our study also appeared in some of these studies.  

Arushi Arora et al. conducted qualitative studies on several open-source SBOM tools based on 

taxonomies and functionalities (Arora et al., 2022). The SBOM Benchmark (Interlynk, n.d.) offers 

quality scores of SBOM from different angles, including compliance with guidelines from NTIA 

(NTIA, 2021) and completeness of license descriptions. Although our research does not focus on 

license issues, license management is another major objective of SBOM, which we will address in a 

future work. Some studies have investigated the prevalence and adaptation issues in creating SBOMs 

in open-source projects and enterprise software (Kanemoto et al., 2023; BI et al., 2023; Stalnaker et al., 

2024). They have revealed that many software developers struggle to ensure the transparency and 

completeness of SBOMs, and the qualities can differ between projects and employed languages. In 

addition, understanding the contents of a large SBOM is difficult for human developers. Jones et al. 

proposed a visualization technique to identify changes and differences in SBOMs using a series of 

software (Jones & Tate, 2023). Additionally, for human operators, the usability of a tool can effectively 

handle vulnerable packages (Kim et al., 2023). 

As many Docker containers suffer from vulnerabilities (SlimAI, 2022), several Docker Image 

Vulnerability Scanners (DIVSes) have been developed (Anchor, n.d.b; Aqua security, n.d., Quay, 

n.d.b) to inspect containers and detect vulnerable components. These tools are relevant to SBOM 

generators, and some can detect vulnerabilities and generate SBOMs. Some studies (Haque & Babar 

2022; Malhotra et al., 2023) combined DIVSes to detect vulnerabilities in popular Docker images, 

such as base, official, and verified images. However, similar to SBOM generators, DIVSes are not free 

from overlooked vulnerabilities owing to the lack of complete vulnerability databases and the inability 

to list all components in images. According to the study (Javed & Toor, 2021), even the best DIVS can 

miss 35% of known vulnerabilities in an image. Some studies combined several DIVSes and 

CVEBinTool (Intel, n.d.) to increase the detection coverage of vulnerabilities (Majumder et al., 2023; 

Doan & Jung 2022). In particular, (Doan & Jung 2022) evaluated the effectiveness of CVEB in Tool in 
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identifying known vulnerable packages installed manually using a wget and curl during the container 

build process. In this regard, the work may look similar to ours, but our work covers a wider range of 

manually installed packages regardless of the existence of known vulnerabilities by using generative 

AI, including the analysis of active packages. 

Table 4 shows the comparison of our work with related existing research introduced above. As this 

table indicates our work handles more Docker container datasets than existing works, and especially 

focuses on how accurately the latest SBOM tools handle the manually installed packages, some of 

which include vulnerabilities. In this regard, our work outperforms existing literature. 

Table 4: Comparison of our Work with Existing Research 

Work Analysis 

Target  

Number 

of 

Datasets 

Accuracy 

Analysis of 

SBOMs from 

different 

tools 

Focus on 

manually 

installed 

packages 

Analysis of 

vulnerabilities in 

Docker containers 

based on scanning 

tools (i.e., DIVSes, 

SBOM tools) 

(Balliu et al., 2023) Java 

projects 

<10 Yes No No 

(Torres-Arias et al., 2023) Docker 

Container 

700 Limited (only 

the number of 

components is 

compared) 

No No 

(Javed & Toor, 2021) Docker 

Container 

59 No No Yes  

(Doan & Jung 2022) Docker 

Container 

10 for 

thorough 

analysis 

No Yes Yes 

Our work Docker 

Container 

3514 Yes  Yes Yes 

8 Conclusion 

This study evaluated two prominent SBOM generators with respect to the accuracy of their SBOMs, 

with a particular focus on manually installed packages in more than 3500 Docker containers. The 

results indicate that several issues need to be addressed, including the handling of the latest and early 

versions of a few prominent tools, myriad niche tools, and certain languages. Most significantly, the 

results suggest the generators could overlook 30-70% of all the manual installations. On the other 

hand, the combination of multiple SBOM generators will be beneficial to expand the coverage. We 

also demonstrated that generative AI can support the analysis of manually installed packages better 

than existing tools. Understanding the current status quo is the first step towards realizing a secure 

software supply chain.  

The discussion in this paper is a snapshot with a dataset from a certain Docker repository and 

SBOM generators that were popular at the time of the experiments. Since the generators have been 

evolving as authorities recommend the use of SBOMs and more Docker producers are aware of the 

security issues, this trend can change over time. On the other hand, our package analysis in this 

research depends on the capability of Generative AI. The recent advances in AI technologies will 

enables us to analyze packages in containers more accurately and extensively over time, which may 

result in revealing more potential risks than we are currently aware of. 
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Thus, we will continue this research with more SBOM generators and more intricate execution 

settings of Docker containers to further clarify and prioritize the risks from overlooking manually 

installed packages and other SBOM-relevant issues. 
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