
ISSN: 2182-2069 / E-ISSN: 2182-2077

293

Effectiveness of MAC Systems based on LSM and their

Security Policy Configuration for Protecting IoT Devices

Masato Miki1, Toshihiro Yamauchi2*, and Satoru Kobayashi3

1Graduate School of Natural Science and Technology, Okayama University, Japan.

pwuo7fgl@s.okayama-u.ac.jp, https://orcid.org/0009-0001-6383-653X

2*Faculty of Environmental, Life, Natural Science and Technology, Okayama University, Japan.

yamauchi@okayama-u.ac.jp, https://orcid.org/0000-0001-6226-5715

3Faculty of Environmental, Life, Natural Science and Technology, Okayama University, Japan.

sat@okayama-u.ac.jp, https://orcid.org/0000-0003-1017-0938

Received: March 30, 2024; Revised: May 29, 2024; Accepted: June 27, 2024; Published: August 30, 2024

Abstract

The number of attacks exploiting Internet of Things (IoT) devices has been increasing with the

emergence of IoT malware targeting IoT devices. The use of IoT devices in a wide variety of

situations has resulted in an urgent need to improve the security of the IoT devices themselves.

However, the IoT devices themselves have low hardware performance and their operating systems

and applications are not frequently updated, leaving many devices vulnerable to IoT malware

attacks. Mandatory Access Control (MAC) systems based on Linux Security Modules (LSM),

such as SELinux and AppArmor, can mitigate the impact of these attacks, even if software

vulnerabilities are discovered and exploited. However, most IoT devices do not currently employ

these systems. While existing approaches have examined on-board resources as one factor

affecting the applicability of MAC systems, they are insufficient to address all relevant factors. In

this paper, we report the factors that may prevent the deployment of LSM-based secure OS in IoT

devices and the results of our evaluation of the effectiveness of LSM-based secure OS against IoT

malware attacks. First, we comprehensively investigated the impact of each factor of IoT devices

on the deployment of LSM-based secure OS. To improve the comprehensiveness of the factors

affecting the deployment, we investigated the kernel version, CPU architecture, and BusyBox

support. Next, we conducted an attack experiment that simulated the attack method of Mirai, a

typical IoT malware, to investigate whether it is possible to protect against IoT malware. We also

showed how to modify the security policy, and the cost of modifying it, for secure OSs that cannot

prevent attacks from IoT malware with the default security policy. Finally, we report the results of

our investigation into the impact of these factors in combination.

Keywords: Mandatory Access Control System, IoT Security, Linux Security Modules.

Journal of Internet Services and Information Security (JISIS), volume: 14, number: 3 (August), pp. 293-315.

DOI: 10.58346/JISIS.2024.I3.018

*Corresponding author: Faculty of Environmental, Life, Natural Science and Technology, Okayama

University, Japan.

Effectiveness of MAC Systems based on LSM and their

Security Policy Configuration for Protecting IoT Devices
 Masato Miki et al.

294

1 Introduction

The number of attacks exploiting IoT devices has been increasing with the emergence of IoT malware

targeting IoT devices. Moreover, attack methods that exploit software vulnerabilities in IoT devices

are becoming more common. Therefore, improving the security of IoT devices is essential.

It is challenging for security measures to focus on specific attack methods to mitigate the impact of

attacks exploiting the most recent vulnerabilities. Linux OS is widely used in IoT devices (Eclipse,

2019); thus, such devices cannot prevent attacks once an attacker gains root privilege. One possible

approach is to restrict redundant file operations, which remains effective even if attackers have root

privileges. To provide these security features, Linux mainline kernels support MAC systems, such as

SELinux (SELinux Wiki contributors, 2017) and AppArmor (Ubuntu Wiki, 2021), based on LSM.

These systems can restrict file operations—such as read, write, and execution—based on security

policy rules. MAC systems are effective even for users with root privileges (Salve, 2020).

However, Akiyama et al., (Akiyama et al., 2023) reported that MAC systems are not actually

deployed in most IoT devices. Previous studies have focused on resources on IoT devices as a factor

preventing MAC systems from being deployed. However, they have not comprehensively investigated

factors related to the actual security of IoT devices, such as protection against IoT malware (Aswathy

et al., 2023). They also did not explore the impact of combinations of these factors. Revealing these

factors is helpful in determining which MAC systems should be used in IoT devices (Iman et al.,

2023). Therefore, these factors need to be clarified comprehensively. While previous studies did not

clarify how the limitation on the actual security of IoT devices impacts on the effectiveness of MAC

systems, our study investigated factors which related with current limitation or environment on the

actual security of IoT devices comprehensively and overcame this gap.

Our research aims to conduct a thorough investigation into the factors influencing the deployment

of MAC systems based on LSM in IoT devices. To address this objective, we analyzed three critical

aspects to determine the frequency with which technical factors hinder the deployment of MAC

systems on IoT devices: (1) their applicability to IoT devices, (2) their effectiveness in protecting

against IoT malware, and (3) the cost associated with updating security policies.

To increase the comprehensiveness of the applicability factors, we investigated additional technical

aspects such as the kernel version, CPU architecture, and BusyBox support. We chose the kernel

version to investigate whether IoT devices install kernel versions which lack the support of MAC

systems frequently (Surendar et al., 2024). We focused on CPU architecture to clarify whether MAC

systems can be deployed on any CPU architecture because IoT devices uses various CPU architecture.

We selected support for BusyBox to investigate whether MAC systems can distinguish each command

executed by it and work properly since BusyBox is widely used in IoT devices while there exists a

concern which it cannot be controlled properly because it is a single file. We also examined factors

previously identified in studies, including memory consumption (Nakamura et al., 2015), file systems

(Nakamura, 2006), and processing delays (Nakamura et al., 2015). Additionally, we conducted

simulation experiments using the Mirai attack method with both default and customized settings to

assess whether MAC systems can protect IoT devices from malware (Bobir et al., 2024). Moreover,

we compared the rules added in the customized settings and analyzed the cost of updating security

policies to protect IoT devices from Mirai. We investigated the impact of various combinations of

these factors on the adoption of MAC systems. This paper extends a conference paper (Miki et al.,

2023) with further details.

Effectiveness of MAC Systems based on LSM and their

Security Policy Configuration for Protecting IoT Devices
 Masato Miki et al.

295

2 MAC Systems in IoT Devices

2.1 Overview of LSM-Based MAC Systems

A security framework (LSM) was implemented on Linux systems to facilitate the deployment of MAC

systems. LSM comprises a set of hook functions for security checks within the Linux kernel, which are

applied to users with root privileges as well.

This study investigates several prominent MAC systems, including SELinux (SELinux Wiki

contributors, 2017), Smack (Schaufler, 2011b), TOMOYO Linux (TOMOYO Linux, n.d.c), and

AppArmor (Ubuntu Wiki, 2021). These MAC systems are categorized into two types: label-based and

path-name-based. Label-based MAC systems rely on extended attribute (xattr) support in file systems,

using an attribute called 'label' for MAC purposes, which is stored in xattr. In contrast, path-name-

based MAC systems do not require such support, as they implement MAC through the use of path

names.

2.2 Advantages of MAC Systems in Securing IoT Devices

For instance, SELinux can protect Linux systems against attacks targeting vulnerabilities such as

CVE-2019-13272, which is exploited for privilege escalation (Red Hat, 2023). The implementation of

security measures in IoT devices is often constrained by limited onboard resources (Hossain et al.,

2015). However, there are scenarios in which MAC systems can be effectively deployed on IoT

devices by optimizing resource usage. For example, SELinux can be configured for use on a device

with 64MB of memory by adjusting its settings to limit memory consumption to under 1MB

(Nakamura et al., 2015). Additionally, it has been demonstrated that the processing delays associated

with MAC systems do not significantly impair file operation performance in many instances (Zhang et

al., 2021).

2.3 Problems of MAC Systems in the Protection of Actual IoT Devices

Akiyama et al., (Akiyama et al., 2023) found that, among an analysis of 893 GPL source codes

corresponding to the firmware of actual IoT devices, SELinux was adopted in only six instances, and

no other MAC systems were observed. Previous research has identified three potential barriers to the

adoption of SELinux:

1. Excessive memory consumption with default settings (Nakamura et al., 2015).

2. Ineffectiveness of per-file MAC on file systems lacking xattr support (Nakamura, 2006).

3. Significant processing delays associated with default settings (Nakamura et al., 2015).

Although they clarified the aforementioned factors individually, they did not reveal the whole

picture of factors that impact on the adoption of MAC systems on IoT devices. When a decision which

related to the deployment of MAC systems is made without a whole picture of the factors, it can be

biased or erroneous. Thus, it is improper to make decisions that are related to MAC system adoption

using only these previous studies, and the whole factors that impact on the adoption of MAC systems

on IoT devices in the current situation have to be clarified. Therefore, these factors and the impact of

each factor on the adoption of MAC systems need to be investigated comprehensively.

However, previous studies have inadequately explored the factors influencing the adoption of MAC

systems. For example, they have not thoroughly examined the impact of the software used in IoT

Effectiveness of MAC Systems based on LSM and their

Security Policy Configuration for Protecting IoT Devices
 Masato Miki et al.

296

devices, such as the Linux kernel and BusyBox, nor have they considered the hardware characteristics

of IoT devices, including the variability of CPU architectures. Furthermore, the effects of protection

against real-world IoT malware and the costs associated with updating security policies have not been

addressed.

3 Investigation on the Applicability to IoT Devices

To comprehensively investigate the factors influencing the adoption of LSM-based MAC systems for

IoT devices, we investigated three key aspects: applicability to IoT devices, protectability against IoT

malwares, and the cost for updating security policies. This section presents the results of a

comprehensive investigation into the factors that impact the applicability of MAC systems for IoT

devices.

3.1 Investigation Strategy

In addition to the impacts of memory consumption, file systems, and processing delays, which have

been investigated in previous studies, we investigated the effects of several notable characteristics of

IoT devices:

1. Older Linux kernels (Akiyama et al., 2023): Older versions of the Linux kernel do not officially

support MAC systems. We investigate the prevalence of this issue in actual IoT devices.

2. Different CPU architectures: Previous studies have reported that the CPU architecture does not

cause the prevention of using SELinux (Nakamura & Sameshima, 2008) or TOMOYO Linux

(TOMOYO Linux, n.d.b). However, the findings from the former study (Nakamura &

Sameshima, 2008) were published in 2008, and the impact on current MAC systems has not

been reassessed since then. Therefore, we investigated whether CPU architecture might

influence the applicability of contemporary MAC systems.

3. Installation of BusyBox: It has been reported that SELinux and AppArmor provide

per-BusyBox MAC command controls (Nakamura, 2007). However, it is not yet known

whether other MAC systems can manage each BusyBox command differently. Therefore, we

investigated whether BusyBox commands can be protected based on their individual functions.

3.2 Investigation Methods and Results

3.2.1 Memory Consumption

The evaluation environment is listed in Table 1. We evaluated the memory consumption. SELinux,

Smack, and AppArmor were applied with their default security policies. For TOMOYO Linux, we

used a security policy based on MAC rules from execution history because the default security policy

provided by TOMOYO Linux does not contain any MAC rules. Linux capabilities were enabled by

default in this environment.

The procedure for measuring memory consumption is shown as follows.

1. We measured the memory use one minute after system login using the free command. The

measurement is conducted five times for each system.

2. We calculated the average memory usage from these measurements.

Effectiveness of MAC Systems based on LSM and their

Security Policy Configuration for Protecting IoT Devices
 Masato Miki et al.

297

3. We determined the memory consumption with the MAC system by subtracting the average

memory usage with all MAC systems disabled from the average memory usage with the MAC

system enabled.

Table 2 summarizes the evaluation results.

Table 1: Performance Evaluation Environment

CPU BCM2837B0 (ARMv8) 1.4GHz

OS Ubuntu Server 20.04.3 LTS (32bit)

Kernel Version 5.4.83-v7+

Table 2: Measured Memory Consumption (Unit: MB)

MAC System Entire System Increase

None 60.851 -

SELinux 112.573 51.722 (85.0%)

Smack 61.273 0.422 (0.7%)

TOMOYO Linux 62.213 1.363 (2.2%)

AppArmor 74.273 13.423 (22.1%)

We compared these results to those in Table 3, showing the memory capacities of IoT devices

listed as available by OpenWrt (OpenWrt Project, 2023). Some devices do not have any information of

memory capacities, which are excluded in the following analysis.

Table 3: Memory Capacity of IoT Devices Supported by OpenWrt as Available Devices

Memory Capacity Number Memory Capacity Number

16MB 1 1,024MB- 56

32MB 51 2,048MB 18

64MB 169 4,096MB 12

128MB 175 More than 4GB 1

256MB 104 8,192MB 5

512MB 64 More than 8GB 1

 Total 657

We established four progressive criteria to evaluate whether the memory usage was acceptable for

each MAC system:

Criterion 1 (C1): Whether memory usage is less than 1% of the onboard memory capacity

(Whether an applied MAC system do not squeeze memory on any Linux distribution).

Criterion 2 (C2): Memory usage is less than 2% of the onboard memory capacity. This criterion

evaluates whether the MAC system fits within the memory constraints of a Linux distribution under

more relaxed conditions compared to C1.

Criterion 3 (C3): The total memory usage of the MAC system and the OpenWrt kernel (3,828 KB

(OpenWrt Project, 2018)) must be less than the onboard memory capacity. This criterion evaluates

whether the memory is not depleted solely by the OpenWrt kernel.

Criterion 4 (C4): The total memory usage of the entire system is less than the onboard memory

capacity. Devices with a memory capacity of is less than 64 MB were excluded. This criterion assesses

whether the combined memory usage of the MAC system and the entire Ubuntu Server does not

deplete the available memory.

Effectiveness of MAC Systems based on LSM and their

Security Policy Configuration for Protecting IoT Devices
 Masato Miki et al.

298

Table 4 describes the evaluation results of each MAC system based on these criteria. The results

show that, aside from Smack, only a few services could meet the memory usage requirements

specified in C1 and C2 for MAC systems. However, in fewer than one-third of all cases, the system's

memory usage exceeded the onboard memory capacity, as observed in C3 and C4. Therefore, while

memory consumption has a discernible impact on applicability, it should be noted that there are only a

few instances where we cannot rely on MAC systems due to memory constraints.

Table 4: The rate of devices that tolerate MAC system memory usage on each criterion

MAC System C1 C2 C3 C4

SELinux 0.91% 2.89% 92.09% 72.07%

Smack 92.09% 99.85% 100.00% 100.00%

TOMOYO Linux 39.73% 66.36% 100.00% 100.00%

AppArmor 5.63% 14.16% 99.85% 72.07%

3.2.2 File Systems

We demonstrated the availability of MAC systems with different file systems. For the demonstration,

we use a simulated IoT device described in Table 5. The file systems we investigated are listed in

Table 6. Cramfs, romfs, JFFS2, and SquashFS are widely used file systems, which cover all of the file

systems used in the firmware analysis by Liu et al., (Liu et al., 2021). We also included tmpfs because

its reported abuse by IoT malware (Alrawi et al., 2021).

Table 5: Basic Environment for Evaluating MAC Systems

CPU BCM2837B0 (ARMv8) 1.4GHz

OS Ubuntu Server 20.04.3 LTS (64bit) (Except for TOMOYO Linux)

Ubuntu Server 20.04.3 LTS (32bit) (TOMOYO Linux)

Kernel Version 5.4.0-1047-raspi (Except for TOMOYO Linux)

5.4.83-v7+ (TOMOYO Linux)

Table 6: File Systems to be Examined

File System xattr Support Read/Write Permission

Cramfs No Read-only

romfs No Read-only

JFFS2 Yes Readable/Writable

SquashFS Yes Read-only

tmpfs Yes Readable/Writable

We examined the granularity of file-reading restrictions (either per-file or per-file-system) within

each file system to assess the proper functioning of the MAC systems. To this end, we categorized the

target files into two groups: files restricted from being read by the MAC systems (restricted files) and

files permitted for reading (unrestricted files). A per-file MAC is deemed functional if processes can

access unrestricted files while being denied access to restricted files. Conversely, if this condition is

not met, we consider the per-file MAC to be non-functional. Table 7 presents the results.

Table 7: Control Granularity of MAC Systems in Each File System (Do Not Consider that on

Processes)

MAC System Cramfs romfs JFFS2 SquashFS tmpfs

SELinux per-FS per-FS per-file per-file per-file

Smack per-FS per-FS per-file per-file per-file

TOMOYO Linux per-file per-file per-file per-file per-file

AppArmor per-file per-file per-file per-file per-file

Effectiveness of MAC Systems based on LSM and their

Security Policy Configuration for Protecting IoT Devices
 Masato Miki et al.

299

Label-based MAC systems, such as SELinux and Smack, provide per-file-system (per-FS) MAC on

file systems that lack xattr support, as detailed in Table 7. In contrast, pathname-based MAC systems,

including TOMOYO Linux and AppArmor, offer per-file MAC across all file systems.

Based on these results, we conclude that the absence of xattr support significantly impacts the

applicability of MAC systems. A per-FS MAC protocol is unable to enforce distinct access control

rules for individual files within a single file system. This limitation hinders the effectiveness of MAC

systems in providing comprehensive protection against attacks. Consequently, SELinux and Smack

offer constrained MAC functionality and are unsuitable for deployment on file systems without xattr

support.

3.2.3 Processing Delays

We assessed the processing delay introduced by each MAC system in the environments described in

Table 1. Initially, we configured LMbench 3.0-19 (LMbench) with 512 MB of memory and a CPU

frequency of 1,397 MHz. LMbench was executed five times, and the processing delay was computed

as the difference between the results obtained with and without each MAC system.

The evaluation results are summarized in Table 8. SELinux introduced an overhead ranging from

approximately 16.0% to 40.2% for operations except read/write, where the overhead was relatively

minimal. Smack exhibited substantial overhead in stat, open/close, and file creation operations, but

showed relatively low overhead in other operations. TOMOYO Linux demonstrated overheads of

approximately 123.3% and 59.6% for stat and open/close operations, respectively, while maintaining

minimal overhead for read/write operations. AppArmor showed a sufficiently low measurement

overhead. We observed errors except read/write, as these operations were unaffected by the LSM

hooks.

Table 8: Comparison of Processing Delays in Each MAC System (Unit: µs)

MAC stat open/ read/ 0Kfile 0Kfile 10Kfile 10Kfile

System close write Create Delete Create Delete

None 4.00 11.1 0.81 48.6 35.3 101.9 66.2

 (-) (-) (-) (-) (-) (-) (-)

SELinux 4.64 13.3 0.82 68.2 37.8 122.0 64.4

 (16.0%) (19.4%) (1.7%) (40.2%) (7.0%) (19.7%) (-2.7%)

Smack 5.30 13.4 0.70 60.0 37.9 111.6 65.2

 (32.5%) (20.9%) (-13.1%) (23.3%) (7.3%) (9.6%) (-1.6%)

TOMOYO 8.94 17.7 0.71 61.4 40.9 109.8 67.9

Linux (123.3%) (59.6%) (-11.9%) (26.3%) (15.7%) (7.7%) (2.6%)

AppArmor 3.84 10.3 0.82 48.6 34.2 96.9 60.8

 (-4.0%) (-7.2%) (1.7%) (-0.1%) (-3.1%) (-4.9%) (-8.2%)

Thus, we conclude that increased processing delays impact the applicability of the MAC systems,

especially SELinux, Smack, and TOMOYO Linux. However, it remains unclear whether this impact is

substantial enough to render them inapplicable.

3.2.4 Kernel Version

Table 9 outlines the mainline kernel versions integrated with each MAC system. To assess the support

rates for these kernel versions, we compared the kernel versions installed on IoT devices with those

listed in Table 9. Our analysis focused on firmware from IoT devices collected over a three-year

period, from 2019 to 2021, to identify the kernel versions used in these devices.

Effectiveness of MAC Systems based on LSM and their

Security Policy Configuration for Protecting IoT Devices
 Masato Miki et al.

300

Table 9: The Mainline Kernel Version with which each MAC System was Merged

MAC System Kernel version

SELinux 2.6.0 (National Security Agency, n.d.)

Smack 2.6.25 (Corbet, 2008)

TOMOYO Linux 2.6.30 (TOMOYO Linux, n.d.a)

AppArmor 2.6.36 (AppArmor contributors, n.d.)

There were 408, 229, and 115 kernel versions in 2019, 2020, and 2021 from our tabulation result,

respectively, excluding kernels with unknown versions. Fig. 1 shows the comparison results of

collected kernel versions supporting each MAC system.

0

0. 1

0. 2

0. 3

0. 4

0.5

0. 6

0. 7

0. 8

0. 9

1

2019 20 20 2021SE Lin ux Smack T O MO YO Linux App Armo r

Figure 1: Kernel Support Rate for each MAC System

As shown in Figure 1, all the kernel versions support SELinux. Smack and TOMOYO Linux are

supported in more than 80% of the collected kernel versions. In contrast, over 30% of the collected

kernel versions do not support AppArmor. Additionally, less than 20% of the collected kernel versions

lack the support for any pathname-based MAC systems.

Hence, we believe that the kernel version has a minimal impact on the applicability of MAC

systems today, although the effect is not definitely determined. In addition, we expect this impact to

decrease over time as IoT devices should adopt newer kernel versions.

3.2.5 CPU Architecture

We examined the impact of CPU architecture to the applicability of MAC systems using the method

proposed by Nakamura and Sameshima (Nakamura & Sameshima, 2008). This method involved

analyzing the arch directory of the kernel source code to evaluate the impact of CPU architecture. For

our analysis, we used kernel version 5.4.83-v7+ source code.

Our findings confirm that MAC systems are available regardless of CPU architecture. Therefore,

we conclude that CPU architecture has no impact on the applicability of MAC systems.

3.2.6 Support for BusyBox

We evaluated whether Smack and TOMOYO Linux can work correctly within the BusyBox

environment, as shown in Table 5. For this analysis, we used BusyBox version 1.36.0, where SELinux

and AppArmor are supported. To investigate the granularity of MAC (per-command or per-executable

file), we restricted file reading on a per-command basis for each BusyBox command. We executed the

cat, head, busybox cat, and busybox head commands to attempt to read the same file. As a result, only

Effectiveness of MAC Systems based on LSM and their

Security Policy Configuration for Protecting IoT Devices
 Masato Miki et al.

301

the cat command successfully read the file, while the other commands failed. Based on this outcome,

we conclude that a per-command MAC is functional in BusyBox when the cat command can read the

file, and the other commands cannot. If this condition is not met, we consider the per-command MAC

protocol to be non-functional in BusyBox.

Based on the results above, cat is the only command that successfully read the target file, while the

other commands failed. This outcome demonstrates that the BusyBox support for SELinux and

AppArmor (Nakamura, 2007) is also effective for the other two MAC systems (Smack and TOMOYO

Linux).

4 Investigation on the Protection Against IoT Malware

4.1 Investigation Strategy and Methods

To enhance the comprehensiveness of our investigation into IoT malware protection, we evaluated

whether MAC systems could defend against Mirai, a well-known IoT malware. Mirai compromises

IoT devices via Telnet, creating botnets for Distributed Denial of Service (DDoS) attacks

(Antonakakis, 2017). According to (Alrawi et al., 2021), Mirai represents more than half of all IoT

malware currently in circulation. Therefore, focusing on this malware enables us to address threats that

constitute a substantial portion of actual IoT malware incidents.

We investigated the protectability of MAC systems against Mirai using their default settings.

Additionally, we investigated which rules need to be added to protect systems with MAC systems that

cannot defend against attack simulations using default settings.

4.1.1 An Attack Experiment Simulating the Attack Method of Mirai

We conducted an attack simulation in the environment detailed in Table 10 to assess the effectiveness

of MAC systems against Mirai attacks. This environment was set up on a network isolated from the

Internet. We designated a single device as both attacker and victim, with the HTTP server on the

attacker device simulating a program loader for Mirai (simulated malware). Meanwhile, the HTTP

server on the victim device served as the target for the DoS attack originating from the IoT device.

Table 10: Attack Simulation Environment

Device Target IoT device Attacker device and Victim server

CPU Same as Table 5 Intel® Core™ i7-10700K (x86_64) 3.8GHz

OS Same as Table 5 Fedora 34

Kernel version Same as Table 5 5.15.6-100.fc34.x86_64

Figure 2: The Overview of Mirai Attack Simulation

Effectiveness of MAC Systems based on LSM and their

Security Policy Configuration for Protecting IoT Devices
 Masato Miki et al.

302

Figure 2 illustrates the simulation flow based on Mirai’s attack method (Gamblin, 2017). In this

simulation, while Mirai spreads infection from device to device, we instead create a text file as a

marker of a successful attack. This prevents the victim server from being continuously attacked. We

evaluate what attacks in the flow each MAC system can thwart by the results of this simulation. The

simulation proceeds as follows.

1. The attacker executes the attack script and accesses the target IoT device remotely via Telnet.

2. The attacker retrieves simulated malware from the loader using the wget command.

3. The attacker on the target IoT device downloads the simulated malware from the loader.

4. The attacker permits the execution of the simulated malware using Discretionary Access Control

(DAC) and sends 10,000 HTTP packets to simulate a Denial of Service (DoS) attack on the

victim server.

5. The attacker uses Telnet to gain access to the victim server from the target IoT device.

6. Finally, the attacker creates a text file to indicate the successful execution of the attack.

4.1.2 Security Policy Settings

Previous studies have not established whether MAC systems can effectively protect against Mirai

using either the default security policies provided by Linux distributions or customized security

policies. To address this gap, we conducted the simulation detailed in Subsection 4.1.1, employing

both the default security policy of Ubuntu Server and a customized security policy to evaluate their

effectiveness in mitigating these attacks.

Methods for defining access control rules are classified into allow listing and deny listing. Allow

listing allows only the accesses defined in the rule sets, while all other accesses are denied. This

method must cover all combinations of processes, files, and operations, and requires the verification of

each covered combination. Consequently, it incurs significant costs to update security policies.

Moreover, costs increase when almost all accesses are allowed in the default settings. In contrast, deny

listing restricts only accesses defined in rule sets, permitting all other accesses. This method incurs

fewer updating costs than allows listing because it is easier to identify which accesses to restrict.

Additionally, the costs are relatively low, even if almost all accesses are allowed in the default settings,

because costs are sensitive to the number of rules defined in the security policies to be updated.

Because IoT devices have constraints on development costs, deny listing is more likely to be applied

than allow listing from the perspective of updating costs. As a result, deny listing is more likely to

yield practical results regarding development costs. Therefore, we attempted to apply deny listing

when updating security policies to protect against attacks. In our investigation, we customized security

policies using the following customization strategies. We investigated the rules added and evaluated

the protection against the attacks for each strategy.

Customization Strategy 1: This strategy denies the use or execution of Telnet daemons, Telnet

clients, wget, and chmod without specifying the access conditions. This measure addresses cases in

which these commands cannot be uninstalled even though they are not used for proper system

operation.

Customization Strategy 2: This strategy denies the use or execution of a Telnet client, wget, or

chmod by attackers who log in remotely through the Telnet daemon. This measure addresses situations

where the use of these commands by local users and remote login via Telnet is legitimate, but

protection is required against attackers who use Telnet remotely to execute these commands.

Effectiveness of MAC Systems based on LSM and their

Security Policy Configuration for Protecting IoT Devices
 Masato Miki et al.

303

Customization Strategy 3: This strategy prevents attackers who remotely log in through the

Telnet daemon from modifying file permissions (chmod) of executing any files downloaded via wget.

This measure is intended for situations where the use of these three commands by local users and

remote login via Telnet is legitimate, but the system needs protection against the execution of

downloaded malware by attackers who log in remotely using Telnet.

4.2 Investigation Results

We measured at what stage MAC systems mitigate the attack, as illustrated in Fig. 2. With default

settings, none of the attack stages were successfully thwarted by Smack, TOMOYO Linux, or

AppArmor. Consequently, we conducted additional experiments using customized settings based on

the strategies outlined in Subsection 4.1.2. Table 11 presents the protection results from the

simulations described in Section 4.1. Note that the protection against remote login also prevents both

DoS attacks and infections. The success or failure of DoS and infection protection are not related each

other.

Table 11: Results of the Simulated Mirai Attack

MAC

System

 Default

Setting

 Customized

Setting

 Remote

Login

DoS Infection Remote

Login

DoS Infection

SELinux Success (Unobserved) (Unobserved) (Not

Tested)

(Not

Tested)

(Not

Tested)

Smack Failure Failure Failure Success Partially

Failure

Success

TOMOYO

Linux

Failure Failure Failure Success Success Success

AppArmor Failure Failure Failure Success Success Success

4.2.1 Protection Based on Default Settings

SELinux successfully thwarted each stage of the attack, as it effectively blocked remote login attempts

via Telnet, as illustrated in (1) of Fig. 2. In contrast, the other three MAC systems (Smack, TOMOYO

Linux, and AppArmor) did not prevent any stages of the attack. Smack assigned nearly all processes

and files with the same label, ‘_’ (floor), which allowed unrestricted access between them. TOMOYO

Linux operated without a default security policy and used initial settings that lacked access controls. In

AppArmor, the absence of profiles for the attacker’s programs meant that these programs could

perform any operations, as programs without profiles were permitted to execute without restrictions.

Based on these findings, SELinux is expected to provide effective protection against actual IoT

malware with its default settings. Conversely, Smack, TOMOYO Linux, and AppArmor demonstrate

limited effectiveness under their default configurations and require customization to effectively

mitigate attacks.

4.2.2 Protection Based on Customized Settings

We also conducted the attack simulation using customized security policies, following the

customization strategies described in Subsection 4.1.2 on Smack, TOMOYO Linux, and AppArmor.

Customization Strategy 1 denies the use or execution of Telnet daemons, Telnet clients, wget, and

chmod without specifying access conditions. Customization Strategy 2 denies the use or execution of

Effectiveness of MAC Systems based on LSM and their

Security Policy Configuration for Protecting IoT Devices
 Masato Miki et al.

304

the Telnet client, wget, or chmod by attackers who log in remotely via the Telnet daemon.

Customization Strategy 3 prohibits attackers who log in remotely via the Telnet daemon from

modifying the file permissions (chmod) of any file downloaded using wget and from executing them.

Tables 12, 13, and 14 present the simulation results for the security policies following Customization

Strategies 1, 2, and 3, respectively.

Customization Strategy 1: In Smack, we assigned label “^” (hat) to the executable files of

applicable programs as the object label, leveraging the fact that, by default, label “_” is not allowed to

access to label “^.” This prevented the execution or reading of these programs and thwarted remote

login (Telnet daemon), DoS (wget and chmod), and infection (Telnet client). However, it cannot

prevent any attack stage if an attacker successfully logged into the system as the root user. While the

execution of these attacks could be thwarted when the label “^” was assigned to the executable files of

wget and the Telnet client as the subject label, these attacks were thwarted not owing to the denial of

execution or reading of the executable files, but rather due to protocol errors during communication.

Logs detailing the causes of program failure are not output, but we consider the cause is a lack of write

permissions during communication. In addition, the execution of chmod by users with root privileges

is not hindered. In Smack, CAP_MAC_ADMIN capability in Linux grants processes the permission to

modify the labels of processes or files (Schaufler, 2011a). Thus, CAP_MAC_ADMIN likely allows

users with root privileges to bypass MAC and other security restrictions.

Table 12: Simulation Results on Security Policies Following Customization Strategy 1

MAC System Remote Login DoS Infection

Smack Success Partially Failure Success

TOMOYO Linux Success Success Success

AppArmor Success Success Success

Table 13: Simulation Results on Security Policies Following Customization Strategy 2

MAC System Remote Login DoS Infection

Smack - Partially Failure Success

TOMOYO Linux - Success Success

AppArmor - Success Success

Table 14: Simulation Results on Security Policies Following Customization Strategy 3

MAC System Remote Login DoS Infection

Smack - Partially Failure -

TOMOYO Linux - Success -

AppArmor - Success -

TOMOYO Linux assigns domains to all executed programs which include all previously executed

path names, although these domains are created with minimal permissions. Additionally, access

control is disabled by default. Therefore, most permissions for these programs can be disabled by

enabling access control for the applicable domains based on the execution history of the attack

simulation. As a result, it prevents remote login, DoS (wget), and infection, similar to Smack, owing to

the failure of operations such as obtaining environment variables of shell or file attributes. These

results remained consistent even when the attacker gained root privileges. Furthermore, it thwarted the

use of chmod (shown in (4) of Fig. 2), resulting in the failure of the DoS attack.

We created profiles using the aa-genprof command on the executable files of the applicable

programs in AppArmor. The profiles created had minimal permissions, because only execution in the

memory map and reading of the program itself are explicitly allowed. Consequently, the Telnet

Effectiveness of MAC Systems based on LSM and their

Security Policy Configuration for Protecting IoT Devices
 Masato Miki et al.

305

daemon failed to communicate with the attacker’s device and thwarted the remote login. The system

also successfully protected against the DoS attack, owing to the failure to create a file for the simulated

malware via wget or modify the file permissions using chmod. Furthermore, the Telnet client failed to

read a necessary configuration file, and the MAC system thwarted the infection. Even when the

attacker had root privileges, every attack stage was thwarted, similar to TOMOYO Linux.

Customization Strategy 2: We defined labels for each applicable program on Smack, using these

labels as subjects and objects for their executable files. The new labels implemented the following

rules:

1. Label “_” can access all newly defined labels.

2. All labels, except those assigned as objects for the applicable programs, can read and execute all

newly defined labels.

3. Labels assigned as subjects for applicable programs can access label “_” and all newly defined

labels, provided no other rules prohibit this access.

4. Labels used as subjects for Telnet daemons are prohibited from accessing labels assigned as

objects for wget, chmod, and Telnet clients. (The label assigned as subject for the Telnet

daemon is inherited by a bash shell, which is automatically provided to an attacker who logs in

remotely.)

5. All other accesses follow the default settings.

After defining the new labels, we covered all combinations of these labels with the default labels

(“_,” “^”, “*” (star), “?” (huh), “@” (web)) and assigned all permissions (rwxat) to each combination.

When a combination of subject, object, and operation requires denial in the covered combinations, the

corresponding description or an unnecessary permission was deleted. Consequently, the results

obtained for DoS and infection were consistent using Customization Strategy 1.

In TOMOYO Linux, we implemented rules that permit all accesses except those prohibited on

control target operations. We used groups that allowed all operations except those related to control

targets for the applicable domains. For the bash domain, which is automatically provided to an attacker

logging in remotely, we added two specific rules to allow all operations except the execution of the

wget, chmod, and Telnet clients. We defined this group (group 1) to permit all operations, excluding

those related to the control targets, with any option. We created 12 groups using various options,

including file permissions and IP addresses. Although we used wildcards to reduce the number of

rules, describing all path names except those for wget, chmod, and Telnet clients required 15 lines of

rules owing to descriptions excluding particular path names. Additionally, there were instances where

proper system operations were prevented owing to MAC activation on domains derived from bash

without specific rules because domains would transition to wildcard-based domains by default.

Therefore, we need to cover domains that include wildcards and configure them to prevent the

activation of MAC and domain transitions. In the covered domains, MAC can be disabled by adding

use_profile 0, on a single line. As a result, bash failed to execute wget, chmod, and Telnet clients, and

the MAC system thwarted both the DoS and infection attacks.

In AppArmor, we first added rules that permit all operations to the Telnet daemon profile and then

added rules on accesses that should be denied. AppArmor has expressions to specify the types of

operations to restrict, including capability, network, and file. These expressions allow all operations of

the applicable types by adding a rule-like file. We added rules with the aforementioned expressions to

the 12 operations supported by the experimental environment and allowed all operations.

Subsequently, we added rules of the form, such as audit deny pathname x, on the path names of

Effectiveness of MAC Systems based on LSM and their

Security Policy Configuration for Protecting IoT Devices
 Masato Miki et al.

306

execution files of applicable programs and restricted their execution. As a result of this customization,

we obtained the same results as those for TOMOYO Linux.

Customization Strategy 3: None of these MAC systems can identify files downloaded by

attackers who log in remotely using Telnet via the wget directory. Therefore, we configured security

policies in Smack so that wget inherits its labels as a subject for the files it creates. We customized its

settings to enable the following rules based on the customization strategy:

1. Label assigned to wget as subjects can access the label “@” in addition.

2. Label “@” can access labels assigned as subjects to wget in addition.

3. Labels assigned as subjects to Telnet daemons can access labels assigned as objects for wget,

chmod, and Telnet client, but lose permission to access labels assigned as subjects to wget.

4. Labels assigned as subjects to chmod lose permission to access labels assigned as subjects to

wget.

Additionally, the communication destination needs to be labeled with label “@” using echo IP

address @ > /sys/fs/smackfs/netlabel for the proper operation of wget. Consequently, the DoS attack

was thwarted owing to the failure of chmod to read the simulated malware. The DoS attack was also

thwarted because the bash failed to read or execute the malware. However, these protections become

ineffective if an attacker logs in remotely as the root user, similar to results with other customization

strategies.

In TOMOYO Linux, we set up a directory for wget to download files (download directory). We

added rules to prohibit the bash from being used by an attacker who logs in remotely via Telnet from

downloading files outside this directory using wget and executing files in it. Moreover, we added rules

to prevent chmod from accessing files in the download directory. A domain corresponding to wget

uses a group (Group 2) that allows all operations except file writing and creation. We added three lines

of rules that limit file writing and creation are limited to the download directory. Additionally, a

domain corresponding to chmod uses a group (Group 3) that allows all operations except the

modification of file permissions. We added two lines of rules that allow the modification of file

permissions only outside of the download directory. A domain corresponding to bash uses Group 1.

We added four lines of rules that allow the execution of wget and chmod, and access to all path names,

except for the executable files of these commands and inside the download directory. The download

directory can be described with four lines of rules, whereas all path names outside the download

directory require 16 lines of additional rules. In addition, it required 23 lines of rules to describe all

path names, excluding those inside the download directory and the executable files of wget and

chmod. As a result, we confirmed that wget failed to download the simulated malware outside the

download directory. Furthermore, we confirmed that chmod could not modify file permissions, and the

execution of the downloaded malware within the download directory was blocked. Consequently,

TOMOYO Linux thwarted the DoS attack.

We added rules for AppArmor using the same strategy as in TOMOYO Linux. Similar to

Customization Strategy 2, we added rules that allowed all operations at the beginning of the profile of

Telnet daemon. The execution of download files in the download directory by the Telnet daemon can

be restricted using the rule audit deny download_directory/** x. To add rules for wget and chmod in

the profile of the Telnet daemon as child processes, we added rules with the format path name

rwlkmcx. In the profiles of wget and chmod, as child processes of the Telnet daemon written using the

aforementioned method, we added rules that allow all operations. In the wget, all files outside the

download directory were covered by listing files in the root directory and all path names with different

Effectiveness of MAC Systems based on LSM and their

Security Policy Configuration for Protecting IoT Devices
 Masato Miki et al.

307

characters in the same position (except for the first character /) as those in the download directory,

because it cannot describe all path names other than specific ones. In chmod, the download directory

can be written to with a single line using the aforementioned rule. Therefore, the download of the

simulated malware failed because of the failure of mknod when the malware was downloaded outside

the download directory. It also prevented chmod from modifying the file permissions of the malware

downloaded in the download directory. Moreover, the bash cannot execute malware in the download

directory. Consequently, it succeeded in protecting against DoS.

From these results, we confirm that TOMOYO Linux and AppArmor are effective against attacks

by actual IoT malware when they have properly customized security policies. We showed that these

MAC systems are effective in protecting against IoT malware even when rules are installed based on a

strategy that denies the execution or use of programs exploited by attackers without specifying any

conditions. It is also clarified that a strategy which prohibits the execution of programs used by

attackers when their parent process is an entry-point program for attackers, such as the Telnet daemon,

is effective. Moreover, we confirmed that these MAC systems can restrict operations to files created

by programs executed by attackers using a defined download directory. However, there are cases in

which some attacks succeed under any strategy owing to MAC bypass by root privileges in Smack.

Therefore, Smack is less likely to protect systems compared to other MAC systems when an attacker

gains root privileges or logs in remotely as a root user.

5 Investigation on the Cost of Updating Security Policies

Section 4 does not clarify the factors that can impact the deployment of MAC systems on IoT devices

from the perspective of the costs associated with updating security policies. Thus, this section presents

results that comprehensively investigate the security policies customized in Section 4 from this

perspective.

5.1 Investigation Strategy

This analysis compares the security policy rules added in Section 4 and the work required for

customization to investigate the cost of updating security policies for protecting systems against actual

IoT malware.

We investigated the number of rules that need to be added to protect systems against actual IoT

malware in each MAC system. We also examined the work required to update the security policies.

Based on these aspects, we conducted a comprehensive analysis of the factors that impact the cost of

updating security policies.

5.2 Investigation Methods

We confirm the number of lines and rules that indicate the combination of subject, object, and

operation (rules on access permissions) are added to the security policies based on each customization

strategy, using this as a quantitative criterion for the number of rules in the security policies. Lines not

directly related to access permissions, such as the configuration of domain transitions, are excluded

from the tabulation of rules on access permissions. In TOMOYO Linux, we tabulated rules on access

permissions by extracting newly defined groups and excluding those related to operational options. We

tabulated a rule written in the form of use_profile as one line of rules on access permissions, because it

is used for enabling or disabling MAC. In AppArmor, we tabulated a rule written in the form of a file

as one line of rule, excluding rules related to domain transitions in the profiles of child processes.

Effectiveness of MAC Systems based on LSM and their

Security Policy Configuration for Protecting IoT Devices
 Masato Miki et al.

308

We summarize the investigation results on required works, such as the coverage of possible

accesses and the availability of deny listings for each MAC system as qualitative criteria for the cost of

customization. Based on these results, we discuss the potential updating costs associated with each

MAC system.

5.3 Investigation Results

5.3.1 Comparison of the Number of Rules Added to Security Policies

Table 15 shows the number of lines and rules added or updated in the customized security policies. In

Customization Strategy 1, Smack did not add new rules but only modified labels. TOMOYO Linux

modified the value of use_profile and updated four rules. AppArmor had a relatively large number of

lines added; however, its updating cost was low because the rules were automatically generated by its

tool. In Customization Strategy 2, the number of added rules for AppArmor remained relatively stable,

while those for Smack and TOMOYO Linux increased significantly. In Customization Strategy 3, the

number of added rules increased significantly for AppArmor, but it did not exceed that of Smack. In

Smack, the increment in the added rules in this strategy was only two compared to Customization

Strategy 2. The number of rules added for TOMOYO Linux increased more significantly compared to

Customization Strategy 2.

Table 15: The Numbers of Lines/Rules Added or Updated in Customized Security Policies

MAC

System

Customization

Strategy 1

Customization

Strategy 2

Customization

Strategy 3

Smack 0/0 53/53 55/55

TOMOYO

Linux

4/4 100/41 177/107

AppArmor 36/4 25/15 74/51

From the results, the updating cost is generally lower for any MAC system when Customization

Strategy 1 is adopted. However, Smack and TOMOYO Linux may incur higher updating costs owing

to the significant increase in rules when adding them to specify fine access conditions, such as in

Customization Strategies 2 and 3. In contrast, AppArmor incurs a lower updating cost compared to

TOMOYO Linux, owing to fewer rules required.

5.3.2 Comparison of Required Works for Customization and Cost for Each Work

Table 16 lists the work required for security policy customization for each MAC system. Table 17 lists

the availability of the deny listings. Smack can use a deny listing when applying Customization

Strategy 1, because it does not require additional rules for restricting programs. However, when

applying Customization Strategies 2 or 3, it must use and allow listing to define rules covering label

combinations, owing to the need to add rules and the absence of syntax for denying specified accesses.

Additionally, increasing the number of newly defined labels can rapidly increase the number of label

combinations and rules. TOMOYO Linux can easily create security policies using deny listing when it

applies Customization Strategy 1 because its tool enables MAC restrictions for each program. In

contrast, when using Customization Strategies 2 or 3, it must cover and describe rules that allow all

accesses on restriction targets and accesses that should not be restricted because it does not prepare

syntax for denying specified accesses. When describing rules, it must be considered that TOMOYO

Linux struggles with describing all path names while excluding specified ones. Additionally, domains

to be restricted must be included in the security policies for any customization policy. Therefore,

Effectiveness of MAC Systems based on LSM and their

Security Policy Configuration for Protecting IoT Devices
 Masato Miki et al.

309

attack simulation is required before customization, and the domains must be identified from the

collected logs. AppArmor can easily allow all accesses using file syntax. When it applying

Customization Strategies 1 or 2, it can easily create security policies based on deny listings using

denial syntax. However, it lacks syntax for describing all path names while excluding specified ones

on a single line, as shown in Customization Strategy 3.

Table 16: Required Works for Security Policy Customization

MAC

System

Overall Coverage

of Accesses

Description to Allow All

Accesses

Log Retrieval at

Attack

Simulation

Smack Required Not Required Not Required

TOMOYO

Linux

Required Not Required Required

AppArmor Not Required Required Not Required

Table 17: Availability of Deny Listing in the Customization of Security Policies

MAC System Available Not Available

Smack Specifying Programs to Be Restricted Customizing Rules for

Programs to Be Restricted

TOMOYO Linux Specifying Programs to Be Restricted Customizing Rules for

Programs to Be Restricted

AppArmor Specifying Programs to Be Restricted,

Customizing Rules for Programs to Be

Restricted

-

In summary, we have confirmed that Smack and TOMOYO Linux can only use deny listings in

limited cases. When deny listings cannot be used, they must cover and verify all possible accesses.

Consequently, this results in a higher cost for creating rules. Additionally, it is necessary to describe

the rules created in security policies according to the syntax of each MAC system, owing to the need to

verify label combinations or the challenge of describing all path names while excluding specified path

names. Hence, we conclude that the overall cost of customizing security policies for Smack and

TOMOYO Linux is high, except in cases such as Customization Strategy 1. However, AppArmor can

create rules using deny listings in most cases, except for the description of all path names, while

excluding specified path names. Therefore, it does not require the coverage and verification of overall

accesses and can explain how security policies control accesses by simply confirming the rules in the

deny list. Hence, we conclude that the cost of updating security policies on AppArmor is significantly

lower compared to other MAC systems. Furthermore, AppArmor has the potential to implement a

syntax for describing all path names while excluding specified path names (Ubuntu Wiki, 2021).

When it becomes able to describe all path names while excluding specified ones in one line, owing to

this syntax, the cost of updating security policies is expected to be even lower.

6 Discussion on the Impact of Combinations of Factors

This section presents the results on the impact of the combinations of factors affecting MAC system

adoption, as discussed in Sections 3, 4, and 5.

Effectiveness of MAC Systems based on LSM and their

Security Policy Configuration for Protecting IoT Devices
 Masato Miki et al.

310

6.1 Combinations on the Applicability for IoT Devices

It is challenging to update security policies during operation due to the prevalence of read-only file

systems on many IoT devices (Liu et al., 2021). Additionally, updating IoT device software is costly,

as automatic updates are not yet widespread (Akiyama et al., 2023). Consequently, updating security

policies for IoT devices can be expensive. Moreover, MAC systems are more prone to

misconfiguration compared to other security features and may interfere with proper system operation

due to the inherent complexities and difficulties associated with their configuration.

When security policies cannot be easily updated, systems that are affected by MAC systems may

also face difficulties in being updated. This can lead to situations where MAC systems cannot be

deployed to avoid these risks. Therefore, these issues are likely to occur in IoT devices.

6.2 Combinations on the Protection Against IoT Malware

IoT vendors frequently develop IoT devices using software components (e.g., SDKs and ODM

devices) provided by chip manufacturers, as illustrated in Figure (Akiyama et al., 2023). Due to

various technical or contractual constraints, there are instances where these components must be

employed with their default settings (Akiyama et al., 2023). Consequently, under such constraints,

only the default security settings of each MAC system can be utilized. However, as detailed in

Subsection 4.2.1, MAC systems, with the exception of SELinux, are unable to effectively mitigate

Mirai attacks when using their default configurations.

Hence, MAC systems can be ineffective for protection when vendors cannot customize the default

security policies owing to these constraints in IoT devices. Therefore, we assume that there are cases

in which IoT vendors cannot adopt them because of this problem. These cases arise unless IoT vendors

have the freedom to update the software components provided by chip vendors.

6.3 Combination on the Cost to Update Security Policies

In some cases, members of the same family of IoT malware may exploit different vulnerabilities or

attack methods. When security policies are customized using deny listings, the rules added to protect

against specified vulnerabilities may not always thwart attacks using other vulnerabilities or attack

methods. Additionally, attackers may evade MAC controls by using methods such as downloading

malware using curl instead of wget when the former is omitted from access control. Hence, denying a

listing requires adding rules for each vulnerability, attack method, and command used by attackers.

However, IoT vendors must manage an enormous number of vulnerabilities when adding rules that

focus on specific vulnerabilities. More than 20,000 CVEs have been reported each year since 2021

(cve.org, n.d.).

Therefore, the cost of updating security policies is likely to be unacceptably large, even when

vendors use deny listings to cover overall vulnerabilities and implement measures against them.

Additionally, this cost may become even higher when IoT vendors consider covering attack methods

or commands to be restricted, verifying whether the added rules can protect systems and managing

constraints on resource consumption. We presume that this problem results in more cases where MAC

systems are not adopted.

Effectiveness of MAC Systems based on LSM and their

Security Policy Configuration for Protecting IoT Devices
 Masato Miki et al.

311

7 Related Work

7.1 Applicability of MAC Systems Focusing Resources

Numerous prior studies have investigated the applicability of MAC systems derived from resource

consumption. Nakamura et al., (Nakamura et al., 2015) demonstrated that the default settings of

SELinux resulted in memory usage and processing delays that were deemed unsuitable for IoT

devices. However, their study did not evaluate the resource consumption of other MAC systems in the

context of IoT devices. Zhang et al., (Zhang et al., 2021) assessed the file operation processing delays

of major MAC systems within a PC environment, but did not explore their impact on IoT devices. In

contrast, our research includes a performance analysis of all prominent MAC systems within an IoT

device simulation environment.

Additionally, research has explored the influence of file systems on MAC operations, which is

another critical factor in determining the applicability of MAC systems. Vogel and Steinke (Vogel &

Steinke, 2010) demonstrated that SELinux could be enabled on JFFS2 by patching the kernel prior to

official xattr support, but their study did not address other file systems commonly used in IoT devices.

In our work, we expanded on this by demonstrating the capability of per-file MAC systems to function

effectively across a broader range of file systems.

7.2 Protecting Systems Using MAC Systems

Bugiel et al., (Bugiel et al., 2013) focused on defense mechanisms against attacks by enhancing

SELinux for Android, demonstrating that their improved version of SELinux could defend against

attacks exploiting real vulnerabilities. However, their research has two key limitations. Firstly, they did

not examine the protectability of MAC systems only with default security policy settings. Secondly,

their study did not address whether MAC systems could offer protection through simple security

policy configurations, as opposed to more extensive extensions. In contrast, our research involved

attack simulations based on the Mirai attack method, a representative IoT malware, to evaluate

whether each MAC system could protect against such simulated attacks using either default or

customized settings.

There exist previous studies that create security policies using logs and show which rules are

effective for protection. Zhu & Gehrmann (Zhu & Gehrmann, 2021) designed LiCSec to generate

profiles for AppArmor. Zhu et al., (Zhu et al., 2023) improved LiCSec for container environment and

described which access denial rule contributed to protecting systems on thwarted vulnerabilities.

However, these studies did not clarify how to describe equivalent rules in other MAC systems. We

investigated which rules should be added to protect against Mirai on Smack, TOMOYO Linux, and

AppArmor targeting protection for IoT devices.

Other studies built security policies using allow listing. Jiang et al., (Jiang et al., 2023) showed

specific and detailed procedure for customizing security policies on SELinux. On the other hand, they

did not evaluate which rules are effective for protection in the procedure. Dunlap et al., (Dunlap, 2022)

clarified excessive or lacking permissions on the security policies of snap and flatpak by manual

application tests. However, this work targeted repositories for desktop systems and its investigation

results cannot be applied to IoT devices. A literature (Farrow, 2018) described how Netflix created

security policies on SELinux using numerous logs. This method may not be applied easily because it

assumes the use of huge logs. In this study, we provided a method to customize security policies using

deny listing but without numerous logs on Smack, TOMOYO Linux, and AppArmor to protect against

Effectiveness of MAC Systems based on LSM and their

Security Policy Configuration for Protecting IoT Devices
 Masato Miki et al.

312

Mirai on IoT devices and showed whether deny listing is effective from the aspects of protection and

updating cost.

7.3 Cost to Update or Operate Security Policies on MAC Systems

Akiyama et al., (Akiyama et al., 2023) showed that verification cost is one of the challenges for the

deployment of security features through a vendor interview as a previous study on the operation cost

of MAC systems. However, they did not clarify how much it costs to verify security policies.

Additionally, they did not sufficiently investigate what work is the cause of the large cost to customize

and operate security policies. We revealed how many lines and rules are added in each MAC system

and customization strategy to protect IoT devices against Mirai. Moreover, we compared required

works for policy customization and the availability of deny listing.

There exists a study that designed a programmable notation for security policies to decrease the

updating cost of security policies and improve explanatory of security policies. Belair et al., designed a

MAC system based on LSM as SNAPPY (Belair et al., 2021) and showed that their MAC system can

measure against vulnerabilities by adding a few to a dozen lines of rules. However, it needs the

deployment of eBPF and their own LSM, which is not merged to the mainline kernel. In this study, we

focused on deny listing as a method to both reduce costs to update security policies and improve

explanatory.

8 Conclusion

In this study, we present the findings of our investigation into the factors that prevent the introduction

of LSM-based secure OSs into IoT devices, as well as an analysis of the ability of LSM-based secure

OSs to protect IoT devices from IoT malware attacks. In our investigation of the factors that prevent

the introduction of LSM-based secure OSs into IoT devices, we conducted a comprehensive analysis

of the following factors: kernel version, CPU architecture, BusyBox support, memory consumption,

and file system support. Furthermore, we evaluated the influence of the combination of multiple

factors on the feasibility of implementation.

Furthermore, we investigated whether it is feasible to protect against attack simulations using the

Mirai attack method by examining the capabilities of the default security policies of each secure OS. In

the case of secure OSs that are unable to prevent attacks using the default security policies, we

presented methods for updating the security policies and the associated costs, as well as strategies for

utilizing LSM-based secure OSs to provide protection for IoT devices.

As a result, we revealed that MAC systems cannot be applied in certain cases, primarily because of

resource consumption, file systems, and security policy settings. Additionally, we clarified that the

cost of fixing security policies is larger in Smack and TOMOYO Linux than in AppArmor,

particularly in terms of the number of added rules and the required work.

Moreover, we investigated cases in which combinations of these factors could impact on the

deployment of MAC systems in IoT devices. First, we identified that more cases occur where MAC

systems are neither adopted to avoid the risk of improper operation nor customized, because their

settings cannot be updated during operation owing to technical reasons in many IoT devices. Second,

there could be cases in which MAC systems, except for SELinux, fail to effectively protect IoT

devices because they rely solely on the default security policy settings, constrained by the development

practices within the IoT supply chain. Finally, we consider cases where, even with a deny listing, the

Effectiveness of MAC Systems based on LSM and their

Security Policy Configuration for Protecting IoT Devices
 Masato Miki et al.

313

cost of fixing security policies may be unreasonable in IoT devices because MAC systems need to add

rules whenever new vulnerabilities are identified.

In summary, this study clarified the range of factors that can impact the adoption of MAC systems

in IoT devices. Consequently, we expect IoT vendors to more easily determine which MAC systems

they can adopt for developing IoT devices based on the findings of this study. We also anticipate that

they will be able to take more appropriate measures when adopting MAC systems. Additionally, this

study revealed that there are issues, such as the specifications of MAC systems or the software

installed on IoT devices, which IoT vendors cannot resolve independently. Based on our findings, we

expect the developers of MAC systems and software used in IoT devices to modify their software to

facilitate the deployment of MAC systems. In particular, we expect AppArmor developers to

implement syntax that allows for the description of overall path names, while excluding specified path

names in a single line, leading to more cases where the fixing cost of security policies on AppArmor is

acceptable.

Acknowledgments

This research was partially supported by JST, PRESTO Grant Number JPMJPR1938, Japan, and by

JSPS Grants-in-Aid for Scientific Research, JP 23K24848. We also extend our gratitude to those who

contributed to this work. Specifically, Ryota Yoshimoto and Shugo Shiraishi were instrumental in

collecting the firmware of IoT devices analyzed in Section 3.2.4.

References

[1] Akiyama, M., Shiraishi, S., Fukumoto, A., Yoshimoto, R., Shioji, E., & Yamauchi, T. (2023).

Seeing is not always believing: Insights on IoT manufacturing from firmware composition

analysis and vendor survey. Computers & Security, 133, 103389.

https://doi.org/10.1016/j.cose.2023.103389

[2] Alrawi, O., Lever, C., Valakuzhy, K., Snow, K., Monrose, F., & Antonakakis, M. (2021). The

Circle of life: A {large-scale} study of the {IoT} malware lifecycle. In 30th USENIX Security

Symposium (USENIX Security 21), 3505-3522.

[3] Antonakakis, M., April, T., Bailey, M., Bernhard, M., Bursztein, E., Cochran, J., ... & Zhou,

Y. (2017). Understanding the mirai botnet. In 26th USENIX security symposium (USENIX

Security 17), 1093-1110.

[4] AppArmor contributors. (n.d.). AppArmor. 2023. https://apparmor.net/

[5] Aswathy, R.H., Srithar, S., Roslin Dayana, K., Padmavathi., & Suresh, P. (2023). MIAS: An

IoT based Multiphase Identity Authentication Server for Enabling Secure Communication.

Journal of Internet Services and Information Security, 13(3), 114-126.

[6] Belair, M., Laniepce, S., & Menaud, M.J. (2021). SNAPPY: Programmable Kernel-Level

Policies for Containers. Proceedings of the 36th Annual ACM Symposium on Applied

Computing (SAC ’21), 1636–1645.

[7] Bobir, A.O., Askariy, M., Otabek, Y.Y., Nodir, R.K., Rakhima, A., Zukhra, Z.Y., Sherzod,

A.A. (2024). Utilizing Deep Learning and the Internet of Things to Monitor the Health of

Aquatic Ecosystems to Conserve Biodiversity. Natural and Engineering Sciences, 9(1), 72-83.

[8] Bugiel, S., Heuser, S., & Sadeghi A. R. (2013). Flexible and Fine-grained Mandatory Access

Control on Android for Diverse Security and Privacy Policies. In 22nd USENIX Security

Symposium (USENIX Security 13), 131–146.

[9] Corbet, J. (2008). More stuff for 2.6.25, LWN.net. https://lwn.net/Articles/267849/

[10] cve.org. (n.d.). Metrics | CVE. 2024. https://www.cve.org/About/Metrics

Effectiveness of MAC Systems based on LSM and their

Security Policy Configuration for Protecting IoT Devices
 Masato Miki et al.

314

[11] Dunlap, T., Enck, W., & Reaves, B. (2022). A Study of Application Sandbox Policies in

Linux. In Proceedings of the 27th ACM on Symposium on Access Control Models and

Technologies, 19-30.

[12] Eclipse. (2019). IoT Developer Survey 2019 Results.

https://iot.eclipse.org/community/resources/iot-surveys/assets/iot-developer-survey-2019.pdf

[13] Farrow, R. (2018). Interview with Travis McPeak. Login Usenix Mag., 43(2), 10–12.

[14] Gamblin, J. (2017). jgamblin/Mirai-Source-Code: Leaked Mirai Source Code for

Research/IoC Development Purposes. https://github.com/jgamblin/Mirai-Source-Code

[15] Hossain, M. M., Fotouhi, M., & Hasan, R. (2015) Towards an Analysis of Security Issues,

Challenges, and Open Problems in the Internet of Things. In IEEE World Congress on

Services, 21–28.

[16] Iman, M.B., Qusay, A.A., Inass, S.H., & Refed, A.J. (2023). Mobile-computer Vision Model

with Deep Learning for Testing Classification and Status of Flowers Images by using IoTs

Devices. Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable

Applications, 14(1), 82-94.

[17] Jiang, C., Wu, S., Wu, G., Yang, C., Cai, L., & Zhong, F. (2023). Application Research of

Security Policy in the Linux Operating System. Proceedings of the 2022 4th International

Conference on Robotics, Intelligent Control and Artificial Intelligence (RICAI ’22), 638–641.

[18] Liu, K., Yang, M., Ling, Z., Yan, H., Zhang, Y., Fu, X., & Zhao, W. (2021) On Manually

Reverse Engineering Communication Protocols of Linux-based IoT Systems. IEEE Internet of

Things Journal, 8(8), 6815-6827.

[19] Miki, M., Yamauchi, T., & Kobayashi, S. (2023) Evaluation of Effectiveness of MAC

Systems Based on LSM for Protecting IoT Devices. In Proceedings of 11th International

Symposium on Computing and Networking (CANDAR2023), 161–167.

[20] Nakamura, Y. (2006). Specification of Simplified Policy Description Language (SPDL) Ver

2.1. https://seedit.sourceforge.net/doc/2.1/spdl_spec.pdf

[21] Nakamura, Y. (2007). Domain assignment support for SELinux/AppArmor/LIDS.

http://lists.busybox.net/pipermail/busybox/2007-August/062635.html

[22] Nakamura, Y., & Sameshima, Y. (2008). SELinux for Consumer Electronics Devices. In

Ottawa Linux Symposium, 125–134.

[23] Nakamura, Y., Sameshima, Y., & Yamauchi, T. (2015). Reducing Resource Consumption of

SELinux for Embedded Systems with Contributions to Open-Source Ecosystems. Journal of

Information Processing, 23(5), 664–672.

[24] National Security Agency. (n.d.). Home | Open Source @ NSA. 2023. https://code.nsa.gov/

[25] OpenWrt Project. (2018). [OpenWrt Wiki] OpenWrt File System Hierarchy / Memory Usage.

https://openwrt.org/docs/techref/file_system

[26] OpenWrt Project. (2023). [OpenWrt Wiki] Table of Hardware: Full details.

https://openwrt.org/toh/views/toh_extended_all

[27] Red Hat. (2023). SELinux as a security pillar of an operating system - Real-world benefits and

examples. https://access.redhat.com/articles/6964380

[28] Salve, V. (2020). Inside the Linux security module (LSM). In Embedded Linux Conference

North America 2020 (ELC2020).

[29] Schaufler, C. (2011a). The Smack Project - Description from the Linux source tree.

http://schaufler-ca.com/description_from_the_linux_source_tree

[30] Schaufler, C. (2011b). The Smack Project - Home. http://schaufler-ca.com

[31] SELinux Wiki contributors. (2017). SELinux Wiki. http://selinuxproject.org/page/Main_Page

[32] Surendar, A., Saravanakumar, V., Sindhu, S., & Arvinth, N. (2024). A Bibliometric Study of

Publication - Citations in a Range of Journal Articles. Indian Journal of Information Sources

and Services, 14(2), 97–103. https://doi.org/10.51983/ijiss-2024.14.2.14

[33] TOMOYO Linux. (n.d.a). (2024). TOMOYO Linux 2.6.x: The Official Guide: Chapter 2.

https://tomoyo.sourceforge.net/2.6/chapter-2.html.en

Effectiveness of MAC Systems based on LSM and their

Security Policy Configuration for Protecting IoT Devices
 Masato Miki et al.

315

[34] TOMOYO Linux. (n.d.b). (2024). TOMOYO Linux Documentation.

https://tomoyo.sourceforge.net/documentation.html.en

[35] TOMOYO Linux. (n.d.c). (2024). TOMOYO Linux Home Page.

https://tomoyo.sourceforge.net/index.html.en

[36] Ubuntu Wiki. (2021). AppArmor - Ubuntu Wiki. https://wiki.ubuntu.com/AppArmor

[37] Vogel, B., & Steinke, B. (2010). Using selinux security enforcement in linux-based embedded

devices. In 1st International ICST Conference on Mobile Wireless Middleware, Operating

Systems and Applications. http://dx.doi.org/10.4108/ICST.MOBILWARE2008.2927.

[38] Zhang, W., Liu, P., & Jaeger, T. (2021). Analyzing the Overhead of File Protection by Linux

Security Modules. In Proceedings of the 2021 ACM Asia Conference on Computer and

Communications Security (ASIA CCS ’21), 393–406.

[39] Zhu, H., & Gehrmann, C. (2021). Lic-Sec: an enhanced AppArmor Docker security profile

generator. Journal of Information Security and Applications, 61, 102924.

https://doi.org/10.1016/j.jisa.2021.102924.

[40] Zhu, H., Gehrmann, C., & Roth, P. (2023). Access security policy generation for containers as

a cloud service. SN Computer Science, 4(6), 748. https://doi.org/10.1007/s42979-023-02186-1.

Authors Biography

Masato Miki, received his B.E., and M.E. degrees from Okayama University, Japan in

2022, 2024, respectively. His research interests include computer security.

Toshihiro Yamauchi, received the B.E., M.E., and Ph.D. degrees in computer science

from Kyushu University, Japan, in 1998, 2000, and 2002, respectively. In 2002, he became

a Research Associate with the Faculty of Information Science and Electrical Engineering,

Kyushu University. In 2005, he became an Associate Professor with the Graduate School of

Natural Science and Technology, Okayama University. Since 2021, he has been serving as

a Professor with Okayama University. His research interests include operating systems and

computer security. He is a member of IPSJ, IEICE, ACM, IEEE, and USENIX.

Satoru Kobayashi, received the Ph.D. degree in information science and technology

from the University of Tokyo, Japan, in 2018. Since 2022, he has been an Assistant

Professor at Faculty of Environmental, Life, Natural Science and Technology, Okayama

University. His research interests include network management and data mining. He is a

member of IPSJ, IEICE, ACM, and IEEE.

https://doi.org/10.1016/j.jisa.2021.102924

