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Abstract 

The number of attacks exploiting Internet of Things (IoT) devices has been increasing with the 

emergence of IoT malware targeting IoT devices. The use of IoT devices in a wide variety of 

situations has resulted in an urgent need to improve the security of the IoT devices themselves. 

However, the IoT devices themselves have low hardware performance and their operating systems 

and applications are not frequently updated, leaving many devices vulnerable to IoT malware 

attacks. Mandatory Access Control (MAC) systems based on Linux Security Modules (LSM), 

such as SELinux and AppArmor, can mitigate the impact of these attacks, even if software 

vulnerabilities are discovered and exploited. However, most IoT devices do not currently employ 

these systems. While existing approaches have examined on-board resources as one factor 

affecting the applicability of MAC systems, they are insufficient to address all relevant factors. In 

this paper, we report the factors that may prevent the deployment of LSM-based secure OS in IoT 

devices and the results of our evaluation of the effectiveness of LSM-based secure OS against IoT 

malware attacks. First, we comprehensively investigated the impact of each factor of IoT devices 

on the deployment of LSM-based secure OS. To improve the comprehensiveness of the factors 

affecting the deployment, we investigated the kernel version, CPU architecture, and BusyBox 

support. Next, we conducted an attack experiment that simulated the attack method of Mirai, a 

typical IoT malware, to investigate whether it is possible to protect against IoT malware. We also 

showed how to modify the security policy, and the cost of modifying it, for secure OSs that cannot 

prevent attacks from IoT malware with the default security policy. Finally, we report the results of 

our investigation into the impact of these factors in combination. 
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1 Introduction 

The number of attacks exploiting IoT devices has been increasing with the emergence of IoT malware 

targeting IoT devices. Moreover, attack methods that exploit software vulnerabilities in IoT devices 

are becoming more common. Therefore, improving the security of IoT devices is essential. 

It is challenging for security measures to focus on specific attack methods to mitigate the impact of 

attacks exploiting the most recent vulnerabilities. Linux OS is widely used in IoT devices (Eclipse, 

2019); thus, such devices cannot prevent attacks once an attacker gains root privilege. One possible 

approach is to restrict redundant file operations, which remains effective even if attackers have root 

privileges. To provide these security features, Linux mainline kernels support MAC systems, such as 

SELinux (SELinux Wiki contributors, 2017) and AppArmor (Ubuntu Wiki, 2021), based on LSM. 

These systems can restrict file operations—such as read, write, and execution—based on security 

policy rules. MAC systems are effective even for users with root privileges (Salve, 2020). 

However, Akiyama et al., (Akiyama et al., 2023) reported that MAC systems are not actually 

deployed in most IoT devices. Previous studies have focused on resources on IoT devices as a factor 

preventing MAC systems from being deployed. However, they have not comprehensively investigated 

factors related to the actual security of IoT devices, such as protection against IoT malware (Aswathy 

et al., 2023). They also did not explore the impact of combinations of these factors. Revealing these 

factors is helpful in determining which MAC systems should be used in IoT devices (Iman et al., 

2023). Therefore, these factors need to be clarified comprehensively. While previous studies did not 

clarify how the limitation on the actual security of IoT devices impacts on the effectiveness of MAC 

systems, our study investigated factors which related with current limitation or environment on the 

actual security of IoT devices comprehensively and overcame this gap. 

Our research aims to conduct a thorough investigation into the factors influencing the deployment 

of MAC systems based on LSM in IoT devices. To address this objective, we analyzed three critical 

aspects to determine the frequency with which technical factors hinder the deployment of MAC 

systems on IoT devices: (1) their applicability to IoT devices, (2) their effectiveness in protecting 

against IoT malware, and (3) the cost associated with updating security policies.  

To increase the comprehensiveness of the applicability factors, we investigated additional technical 

aspects such as the kernel version, CPU architecture, and BusyBox support. We chose the kernel 

version to investigate whether IoT devices install kernel versions which lack the support of MAC 

systems frequently (Surendar et al., 2024). We focused on CPU architecture to clarify whether MAC 

systems can be deployed on any CPU architecture because IoT devices uses various CPU architecture. 

We selected support for BusyBox to investigate whether MAC systems can distinguish each command 

executed by it and work properly since BusyBox is widely used in IoT devices while there exists a 

concern which it cannot be controlled properly because it is a single file. We also examined factors 

previously identified in studies, including memory consumption (Nakamura et al., 2015), file systems 

(Nakamura, 2006), and processing delays (Nakamura et al., 2015). Additionally, we conducted 

simulation experiments using the Mirai attack method with both default and customized settings to 

assess whether MAC systems can protect IoT devices from malware (Bobir et al., 2024). Moreover, 

we compared the rules added in the customized settings and analyzed the cost of updating security 

policies to protect IoT devices from Mirai. We investigated the impact of various combinations of 

these factors on the adoption of MAC systems. This paper extends a conference paper (Miki et al., 

2023) with further details. 
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2 MAC Systems in IoT Devices 

2.1 Overview of LSM-Based MAC Systems 

A security framework (LSM) was implemented on Linux systems to facilitate the deployment of MAC 

systems. LSM comprises a set of hook functions for security checks within the Linux kernel, which are 

applied to users with root privileges as well. 

This study investigates several prominent MAC systems, including SELinux (SELinux Wiki 

contributors, 2017), Smack (Schaufler, 2011b), TOMOYO Linux (TOMOYO Linux, n.d.c), and 

AppArmor (Ubuntu Wiki, 2021). These MAC systems are categorized into two types: label-based and 

path-name-based. Label-based MAC systems rely on extended attribute (xattr) support in file systems, 

using an attribute called 'label' for MAC purposes, which is stored in xattr. In contrast, path-name-

based MAC systems do not require such support, as they implement MAC through the use of path 

names. 

2.2 Advantages of MAC Systems in Securing IoT Devices 

For instance, SELinux can protect Linux systems against attacks targeting vulnerabilities such as 

CVE-2019-13272, which is exploited for privilege escalation (Red Hat, 2023). The implementation of 

security measures in IoT devices is often constrained by limited onboard resources (Hossain et al., 

2015). However, there are scenarios in which MAC systems can be effectively deployed on IoT 

devices by optimizing resource usage. For example, SELinux can be configured for use on a device 

with 64MB of memory by adjusting its settings to limit memory consumption to under 1MB 

(Nakamura et al., 2015). Additionally, it has been demonstrated that the processing delays associated 

with MAC systems do not significantly impair file operation performance in many instances (Zhang et 

al., 2021). 

2.3 Problems of MAC Systems in the Protection of Actual IoT Devices 

Akiyama et al., (Akiyama et al., 2023) found that, among an analysis of 893 GPL source codes 

corresponding to the firmware of actual IoT devices, SELinux was adopted in only six instances, and 

no other MAC systems were observed. Previous research has identified three potential barriers to the 

adoption of SELinux: 

1. Excessive memory consumption with default settings (Nakamura et al., 2015). 

2. Ineffectiveness of per-file MAC on file systems lacking xattr support (Nakamura, 2006). 

3. Significant processing delays associated with default settings (Nakamura et al., 2015). 

Although they clarified the aforementioned factors individually, they did not reveal the whole 

picture of factors that impact on the adoption of MAC systems on IoT devices. When a decision which 

related to the deployment of MAC systems is made without a whole picture of the factors, it can be 

biased or erroneous. Thus, it is improper to make decisions that are related to MAC system adoption 

using only these previous studies, and the whole factors that impact on the adoption of MAC systems 

on IoT devices in the current situation have to be clarified. Therefore, these factors and the impact of 

each factor on the adoption of MAC systems need to be investigated comprehensively. 

However, previous studies have inadequately explored the factors influencing the adoption of MAC 

systems. For example, they have not thoroughly examined the impact of the software used in IoT 
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devices, such as the Linux kernel and BusyBox, nor have they considered the hardware characteristics 

of IoT devices, including the variability of CPU architectures. Furthermore, the effects of protection 

against real-world IoT malware and the costs associated with updating security policies have not been 

addressed. 

3 Investigation on the Applicability to IoT Devices 

To comprehensively investigate the factors influencing the adoption of LSM-based MAC systems for 

IoT devices, we investigated three key aspects: applicability to IoT devices, protectability against IoT 

malwares, and the cost for updating security policies. This section presents the results of a 

comprehensive investigation into the factors that impact the applicability of MAC systems for IoT 

devices. 

3.1 Investigation Strategy 

In addition to the impacts of memory consumption, file systems, and processing delays, which have 

been investigated in previous studies, we investigated the effects of several notable characteristics of 

IoT devices: 

1. Older Linux kernels (Akiyama et al., 2023): Older versions of the Linux kernel do not officially 

support MAC systems. We investigate the prevalence of this issue in actual IoT devices. 

2. Different CPU architectures: Previous studies have reported that the CPU architecture does not 

cause the prevention of using SELinux (Nakamura & Sameshima, 2008) or TOMOYO Linux 

(TOMOYO Linux, n.d.b). However, the findings from the former study (Nakamura & 

Sameshima, 2008) were published in 2008, and the impact on current MAC systems has not 

been reassessed since then. Therefore, we investigated whether CPU architecture might 

influence the applicability of contemporary MAC systems. 

3. Installation of BusyBox: It has been reported that SELinux and AppArmor provide                         

per-BusyBox MAC command controls (Nakamura, 2007). However, it is not yet known 

whether other MAC systems can manage each BusyBox command differently. Therefore, we 

investigated whether BusyBox commands can be protected based on their individual functions. 

3.2 Investigation Methods and Results 

3.2.1 Memory Consumption 

The evaluation environment is listed in Table 1. We evaluated the memory consumption. SELinux, 

Smack, and AppArmor were applied with their default security policies. For TOMOYO Linux, we 

used a security policy based on MAC rules from execution history because the default security policy 

provided by TOMOYO Linux does not contain any MAC rules. Linux capabilities were enabled by 

default in this environment. 

The procedure for measuring memory consumption is shown as follows.  

1. We measured the memory use one minute after system login using the free command. The 

measurement is conducted five times for each system.  

2. We calculated the average memory usage from these measurements.  
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3. We determined the memory consumption with the MAC system by subtracting the average 

memory usage with all MAC systems disabled from the average memory usage with the MAC 

system enabled.  

Table 2 summarizes the evaluation results.  

Table 1: Performance Evaluation Environment 

CPU BCM2837B0 (ARMv8) 1.4GHz 

OS Ubuntu Server 20.04.3 LTS (32bit) 

Kernel Version 5.4.83-v7+ 

Table 2: Measured Memory Consumption (Unit: MB) 

MAC System Entire System Increase 

None 60.851 - 

SELinux 112.573 51.722 (85.0%) 

Smack 61.273 0.422 (0.7%) 

TOMOYO Linux 62.213 1.363 (2.2%) 

AppArmor 74.273 13.423 (22.1%) 

We compared these results to those in Table 3, showing the memory capacities of IoT devices 

listed as available by OpenWrt (OpenWrt Project, 2023). Some devices do not have any information of 

memory capacities, which are excluded in the following analysis. 

Table 3: Memory Capacity of IoT Devices Supported by OpenWrt as Available Devices 

Memory Capacity Number Memory Capacity Number 

16MB 1 1,024MB- 56 

32MB 51 2,048MB 18 

64MB 169 4,096MB 12 

128MB 175 More than 4GB 1 

256MB 104 8,192MB 5 

512MB 64 More than 8GB 1 

  Total 657 

We established four progressive criteria to evaluate whether the memory usage was acceptable for 

each MAC system: 

Criterion 1 (C1): Whether memory usage is less than 1% of the onboard memory capacity 

(Whether an applied MAC system do not squeeze memory on any Linux distribution). 

Criterion 2 (C2): Memory usage is less than 2% of the onboard memory capacity. This criterion 

evaluates whether the MAC system fits within the memory constraints of a Linux distribution under 

more relaxed conditions compared to C1. 

Criterion 3 (C3): The total memory usage of the MAC system and the OpenWrt kernel (3,828 KB 

(OpenWrt Project, 2018)) must be less than the onboard memory capacity. This criterion evaluates 

whether the memory is not depleted solely by the OpenWrt kernel. 

Criterion 4 (C4): The total memory usage of the entire system is less than the onboard memory 

capacity. Devices with a memory capacity of is less than 64 MB were excluded. This criterion assesses 

whether the combined memory usage of the MAC system and the entire Ubuntu Server does not 

deplete the available memory. 
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Table 4 describes the evaluation results of each MAC system based on these criteria. The results 

show that, aside from Smack, only a few services could meet the memory usage requirements 

specified in C1 and C2 for MAC systems. However, in fewer than one-third of all cases, the system's 

memory usage exceeded the onboard memory capacity, as observed in C3 and C4. Therefore, while 

memory consumption has a discernible impact on applicability, it should be noted that there are only a 

few instances where we cannot rely on MAC systems due to memory constraints. 

Table 4: The rate of devices that tolerate MAC system memory usage on each criterion 

MAC System C1 C2 C3 C4 

SELinux 0.91% 2.89% 92.09% 72.07% 

Smack 92.09% 99.85% 100.00% 100.00% 

TOMOYO Linux 39.73% 66.36% 100.00% 100.00% 

AppArmor 5.63% 14.16% 99.85% 72.07% 

3.2.2 File Systems 

We demonstrated the availability of MAC systems with different file systems. For the demonstration, 

we use a simulated IoT device described in Table 5. The file systems we investigated are listed in 

Table 6. Cramfs, romfs, JFFS2, and SquashFS are widely used file systems, which cover all of the file 

systems used in the firmware analysis by Liu et al., (Liu et al., 2021). We also included tmpfs because 

its reported abuse by IoT malware (Alrawi et al., 2021). 

Table 5: Basic Environment for Evaluating MAC Systems 

CPU BCM2837B0 (ARMv8) 1.4GHz 

OS Ubuntu Server 20.04.3 LTS (64bit) (Except for TOMOYO Linux) 

Ubuntu Server 20.04.3 LTS (32bit) (TOMOYO Linux) 

Kernel Version 5.4.0-1047-raspi (Except for TOMOYO Linux) 

5.4.83-v7+ (TOMOYO Linux) 

Table 6: File Systems to be Examined 

File System xattr Support Read/Write Permission 

Cramfs No Read-only 

romfs No Read-only 

JFFS2 Yes Readable/Writable 

SquashFS Yes Read-only 

tmpfs Yes Readable/Writable 

We examined the granularity of file-reading restrictions (either per-file or per-file-system) within 

each file system to assess the proper functioning of the MAC systems. To this end, we categorized the 

target files into two groups: files restricted from being read by the MAC systems (restricted files) and 

files permitted for reading (unrestricted files). A per-file MAC is deemed functional if processes can 

access unrestricted files while being denied access to restricted files. Conversely, if this condition is 

not met, we consider the per-file MAC to be non-functional. Table 7 presents the results. 

Table 7: Control Granularity of MAC Systems in Each File System (Do Not Consider that on 

Processes) 

MAC System Cramfs romfs JFFS2 SquashFS tmpfs 

SELinux per-FS per-FS per-file per-file per-file 

Smack per-FS per-FS per-file per-file per-file 

TOMOYO Linux per-file per-file per-file per-file per-file 

AppArmor per-file per-file per-file per-file per-file 
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Label-based MAC systems, such as SELinux and Smack, provide per-file-system (per-FS) MAC on 

file systems that lack xattr support, as detailed in Table 7. In contrast, pathname-based MAC systems, 

including TOMOYO Linux and AppArmor, offer per-file MAC across all file systems. 

Based on these results, we conclude that the absence of xattr support significantly impacts the 

applicability of MAC systems. A per-FS MAC protocol is unable to enforce distinct access control 

rules for individual files within a single file system. This limitation hinders the effectiveness of MAC 

systems in providing comprehensive protection against attacks. Consequently, SELinux and Smack 

offer constrained MAC functionality and are unsuitable for deployment on file systems without xattr 

support. 

3.2.3 Processing Delays 

We assessed the processing delay introduced by each MAC system in the environments described in 

Table 1. Initially, we configured LMbench 3.0-19 (LMbench) with 512 MB of memory and a CPU 

frequency of 1,397 MHz. LMbench was executed five times, and the processing delay was computed 

as the difference between the results obtained with and without each MAC system. 

The evaluation results are summarized in Table 8. SELinux introduced an overhead ranging from 

approximately 16.0% to 40.2% for operations except read/write, where the overhead was relatively 

minimal. Smack exhibited substantial overhead in stat, open/close, and file creation operations, but 

showed relatively low overhead in other operations. TOMOYO Linux demonstrated overheads of 

approximately 123.3% and 59.6% for stat and open/close operations, respectively, while maintaining 

minimal overhead for read/write operations. AppArmor showed a sufficiently low measurement 

overhead. We observed errors except read/write, as these operations were unaffected by the LSM 

hooks. 

Table 8: Comparison of Processing Delays in Each MAC System (Unit: µs) 

MAC stat open/ read/ 0Kfile 0Kfile 10Kfile 10Kfile 

System  close write Create Delete Create Delete 

None 4.00 11.1 0.81 48.6 35.3 101.9 66.2 

 (-) (-) (-) (-) (-) (-) (-) 

SELinux 4.64 13.3 0.82 68.2 37.8 122.0 64.4 

 (16.0%) (19.4%) (1.7%) (40.2%) (7.0%) (19.7%) (-2.7%) 

Smack 5.30 13.4 0.70 60.0 37.9 111.6 65.2 

 (32.5%) (20.9%) (-13.1%) (23.3%) (7.3%) (9.6%) (-1.6%) 

TOMOYO 8.94 17.7 0.71 61.4 40.9 109.8 67.9 

Linux (123.3%) (59.6%) (-11.9%) (26.3%) (15.7%) (7.7%) (2.6%) 

AppArmor 3.84 10.3 0.82 48.6 34.2 96.9 60.8 

 (-4.0%) (-7.2%) (1.7%) (-0.1%) (-3.1%) (-4.9%) (-8.2%) 

Thus, we conclude that increased processing delays impact the applicability of the MAC systems, 

especially SELinux, Smack, and TOMOYO Linux. However, it remains unclear whether this impact is 

substantial enough to render them inapplicable. 

3.2.4 Kernel Version 

Table 9 outlines the mainline kernel versions integrated with each MAC system. To assess the support 

rates for these kernel versions, we compared the kernel versions installed on IoT devices with those 

listed in Table 9. Our analysis focused on firmware from IoT devices collected over a three-year 

period, from 2019 to 2021, to identify the kernel versions used in these devices. 
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Table 9: The Mainline Kernel Version with which each MAC System was Merged 

MAC System Kernel version 

SELinux 2.6.0 (National Security Agency, n.d.) 

Smack 2.6.25 (Corbet, 2008) 

TOMOYO Linux 2.6.30 (TOMOYO Linux, n.d.a) 

AppArmor 2.6.36 (AppArmor contributors, n.d.) 

There were 408, 229, and 115 kernel versions in 2019, 2020, and 2021 from our tabulation result, 

respectively, excluding kernels with unknown versions. Fig. 1 shows the comparison results of 

collected kernel versions supporting each MAC system. 
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Figure 1: Kernel Support Rate for each MAC System 

As shown in Figure 1, all the kernel versions support SELinux. Smack and TOMOYO Linux are 

supported in more than 80% of the collected kernel versions. In contrast, over 30% of the collected 

kernel versions do not support AppArmor. Additionally, less than 20% of the collected kernel versions 

lack the support for any pathname-based MAC systems. 

Hence, we believe that the kernel version has a minimal impact on the applicability of MAC 

systems today, although the effect is not definitely determined. In addition, we expect this impact to 

decrease over time as IoT devices should adopt newer kernel versions. 

3.2.5 CPU Architecture 

We examined the impact of CPU architecture to the applicability of MAC systems using the method 

proposed by Nakamura and Sameshima (Nakamura & Sameshima, 2008). This method involved 

analyzing the arch directory of the kernel source code to evaluate the impact of CPU architecture. For 

our analysis, we used kernel version 5.4.83-v7+ source code. 

Our findings confirm that MAC systems are available regardless of CPU architecture. Therefore, 

we conclude that CPU architecture has no impact on the applicability of MAC systems. 

3.2.6 Support for BusyBox 

We evaluated whether Smack and TOMOYO Linux can work correctly within the BusyBox 

environment, as shown in Table 5. For this analysis, we used BusyBox version 1.36.0, where SELinux 

and AppArmor are supported. To investigate the granularity of MAC (per-command or per-executable 

file), we restricted file reading on a per-command basis for each BusyBox command. We executed the 

cat, head, busybox cat, and busybox head commands to attempt to read the same file. As a result, only 
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the cat command successfully read the file, while the other commands failed. Based on this outcome, 

we conclude that a per-command MAC is functional in BusyBox when the cat command can read the 

file, and the other commands cannot. If this condition is not met, we consider the per-command MAC 

protocol to be non-functional in BusyBox. 

Based on the results above, cat is the only command that successfully read the target file, while the 

other commands failed. This outcome demonstrates that the BusyBox support for SELinux and 

AppArmor (Nakamura, 2007) is also effective for the other two MAC systems (Smack and TOMOYO 

Linux). 

4 Investigation on the Protection Against IoT Malware 

4.1 Investigation Strategy and Methods 

To enhance the comprehensiveness of our investigation into IoT malware protection, we evaluated 

whether MAC systems could defend against Mirai, a well-known IoT malware. Mirai compromises 

IoT devices via Telnet, creating botnets for Distributed Denial of Service (DDoS) attacks 

(Antonakakis, 2017). According to (Alrawi et al., 2021), Mirai represents more than half of all IoT 

malware currently in circulation. Therefore, focusing on this malware enables us to address threats that 

constitute a substantial portion of actual IoT malware incidents. 

We investigated the protectability of MAC systems against Mirai using their default settings. 

Additionally, we investigated which rules need to be added to protect systems with MAC systems that 

cannot defend against attack simulations using default settings. 

4.1.1 An Attack Experiment Simulating the Attack Method of Mirai 

We conducted an attack simulation in the environment detailed in Table 10 to assess the effectiveness 

of MAC systems against Mirai attacks. This environment was set up on a network isolated from the 

Internet. We designated a single device as both attacker and victim, with the HTTP server on the 

attacker device simulating a program loader for Mirai (simulated malware). Meanwhile, the HTTP 

server on the victim device served as the target for the DoS attack originating from the IoT device. 

Table 10: Attack Simulation Environment 

Device Target IoT device Attacker device and Victim server 

CPU Same as Table 5 Intel® Core™ i7-10700K (x86_64) 3.8GHz 

OS Same as Table 5 Fedora 34 

Kernel version Same as Table 5 5.15.6-100.fc34.x86_64 

 

Figure 2: The Overview of Mirai Attack Simulation 
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Figure 2 illustrates the simulation flow based on Mirai’s attack method (Gamblin, 2017). In this 

simulation, while Mirai spreads infection from device to device, we instead create a text file as a 

marker of a successful attack. This prevents the victim server from being continuously attacked. We 

evaluate what attacks in the flow each MAC system can thwart by the results of this simulation. The 

simulation proceeds as follows. 

1. The attacker executes the attack script and accesses the target IoT device remotely via Telnet. 

2. The attacker retrieves simulated malware from the loader using the wget command. 

3. The attacker on the target IoT device downloads the simulated malware from the loader. 

4. The attacker permits the execution of the simulated malware using Discretionary Access Control 

(DAC) and sends 10,000 HTTP packets to simulate a Denial of Service (DoS) attack on the 

victim server. 

5. The attacker uses Telnet to gain access to the victim server from the target IoT device. 

6. Finally, the attacker creates a text file to indicate the successful execution of the attack. 

4.1.2 Security Policy Settings 

Previous studies have not established whether MAC systems can effectively protect against Mirai 

using either the default security policies provided by Linux distributions or customized security 

policies. To address this gap, we conducted the simulation detailed in Subsection 4.1.1, employing 

both the default security policy of Ubuntu Server and a customized security policy to evaluate their 

effectiveness in mitigating these attacks. 

Methods for defining access control rules are classified into allow listing and deny listing. Allow 

listing allows only the accesses defined in the rule sets, while all other accesses are denied. This 

method must cover all combinations of processes, files, and operations, and requires the verification of 

each covered combination. Consequently, it incurs significant costs to update security policies. 

Moreover, costs increase when almost all accesses are allowed in the default settings. In contrast, deny 

listing restricts only accesses defined in rule sets, permitting all other accesses. This method incurs 

fewer updating costs than allows listing because it is easier to identify which accesses to restrict. 

Additionally, the costs are relatively low, even if almost all accesses are allowed in the default settings, 

because costs are sensitive to the number of rules defined in the security policies to be updated. 

Because IoT devices have constraints on development costs, deny listing is more likely to be applied 

than allow listing from the perspective of updating costs. As a result, deny listing is more likely to 

yield practical results regarding development costs. Therefore, we attempted to apply deny listing 

when updating security policies to protect against attacks. In our investigation, we customized security 

policies using the following customization strategies. We investigated the rules added and evaluated 

the protection against the attacks for each strategy. 

Customization Strategy 1: This strategy denies the use or execution of Telnet daemons, Telnet 

clients, wget, and chmod without specifying the access conditions. This measure addresses cases in 

which these commands cannot be uninstalled even though they are not used for proper system 

operation.  

Customization Strategy 2: This strategy denies the use or execution of a Telnet client, wget, or 

chmod by attackers who log in remotely through the Telnet daemon. This measure addresses situations 

where the use of these commands by local users and remote login via Telnet is legitimate, but 

protection is required against attackers who use Telnet remotely to execute these commands. 
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Customization Strategy 3: This strategy prevents attackers who remotely log in through the 

Telnet daemon from modifying file permissions (chmod) of executing any files downloaded via wget. 

This measure is intended for situations where the use of these three commands by local users and 

remote login via Telnet is legitimate, but the system needs protection against the execution of 

downloaded malware by attackers who log in remotely using Telnet.  

4.2 Investigation Results 

We measured at what stage MAC systems mitigate the attack, as illustrated in Fig. 2. With default 

settings, none of the attack stages were successfully thwarted by Smack, TOMOYO Linux, or 

AppArmor. Consequently, we conducted additional experiments using customized settings based on 

the strategies outlined in Subsection 4.1.2. Table 11 presents the protection results from the 

simulations described in Section 4.1. Note that the protection against remote login also prevents both 

DoS attacks and infections. The success or failure of DoS and infection protection are not related each 

other. 

Table 11: Results of the Simulated Mirai Attack 

MAC 

System 

 Default 

Setting 

  Customized 

Setting 

 

 Remote 

Login 

DoS Infection Remote 

Login 

DoS Infection 

SELinux Success (Unobserved) (Unobserved) (Not 

Tested) 

(Not 

Tested) 

(Not 

Tested) 

Smack Failure Failure Failure Success Partially 

Failure 

Success 

TOMOYO 

Linux 

Failure Failure Failure Success Success Success 

AppArmor Failure Failure Failure Success Success Success 

4.2.1 Protection Based on Default Settings 

SELinux successfully thwarted each stage of the attack, as it effectively blocked remote login attempts 

via Telnet, as illustrated in (1) of Fig. 2. In contrast, the other three MAC systems (Smack, TOMOYO 

Linux, and AppArmor) did not prevent any stages of the attack. Smack assigned nearly all processes 

and files with the same label, ‘_’ (floor), which allowed unrestricted access between them. TOMOYO 

Linux operated without a default security policy and used initial settings that lacked access controls. In 

AppArmor, the absence of profiles for the attacker’s programs meant that these programs could 

perform any operations, as programs without profiles were permitted to execute without restrictions. 

Based on these findings, SELinux is expected to provide effective protection against actual IoT 

malware with its default settings. Conversely, Smack, TOMOYO Linux, and AppArmor demonstrate 

limited effectiveness under their default configurations and require customization to effectively 

mitigate attacks.  

4.2.2 Protection Based on Customized Settings 

We also conducted the attack simulation using customized security policies, following the 

customization strategies described in Subsection 4.1.2 on Smack, TOMOYO Linux, and AppArmor. 

Customization Strategy 1 denies the use or execution of Telnet daemons, Telnet clients, wget, and 

chmod without specifying access conditions. Customization Strategy 2 denies the use or execution of 
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the Telnet client, wget, or chmod by attackers who log in remotely via the Telnet daemon. 

Customization Strategy 3 prohibits attackers who log in remotely via the Telnet daemon from 

modifying the file permissions (chmod) of any file downloaded using wget and from executing them. 

Tables 12, 13, and 14 present the simulation results for the security policies following Customization 

Strategies 1, 2, and 3, respectively. 

Customization Strategy 1: In Smack, we assigned label “^” (hat) to the executable files of 

applicable programs as the object label, leveraging the fact that, by default, label “_” is not allowed to 

access to label “^.” This prevented the execution or reading of these programs and thwarted remote 

login (Telnet daemon), DoS (wget and chmod), and infection (Telnet client). However, it cannot 

prevent any attack stage if an attacker successfully logged into the system as the root user. While the 

execution of these attacks could be thwarted when the label “^” was assigned to the executable files of 

wget and the Telnet client as the subject label, these attacks were thwarted not owing to the denial of 

execution or reading of the executable files, but rather due to protocol errors during communication. 

Logs detailing the causes of program failure are not output, but we consider the cause is a lack of write 

permissions during communication. In addition, the execution of chmod by users with root privileges 

is not hindered. In Smack, CAP_MAC_ADMIN capability in Linux grants processes the permission to 

modify the labels of processes or files (Schaufler, 2011a). Thus, CAP_MAC_ADMIN likely allows 

users with root privileges to bypass MAC and other security restrictions. 

Table 12: Simulation Results on Security Policies Following Customization Strategy 1 

MAC System Remote Login DoS Infection 

Smack Success Partially Failure Success 

TOMOYO Linux Success Success Success 

AppArmor Success Success Success 

Table 13: Simulation Results on Security Policies Following Customization Strategy 2 

MAC System Remote Login DoS Infection 

Smack - Partially Failure Success 

TOMOYO Linux - Success Success 

AppArmor - Success Success 

Table 14: Simulation Results on Security Policies Following Customization Strategy 3 

MAC System Remote Login DoS Infection 

Smack - Partially Failure - 

TOMOYO Linux - Success - 

AppArmor - Success - 

TOMOYO Linux assigns domains to all executed programs which include all previously executed 

path names, although these domains are created with minimal permissions. Additionally, access 

control is disabled by default. Therefore, most permissions for these programs can be disabled by 

enabling access control for the applicable domains based on the execution history of the attack 

simulation. As a result, it prevents remote login, DoS (wget), and infection, similar to Smack, owing to 

the failure of operations such as obtaining environment variables of shell or file attributes. These 

results remained consistent even when the attacker gained root privileges. Furthermore, it thwarted the 

use of chmod (shown in (4) of Fig. 2), resulting in the failure of the DoS attack. 

We created profiles using the aa-genprof command on the executable files of the applicable 

programs in AppArmor. The profiles created had minimal permissions, because only execution in the 

memory map and reading of the program itself are explicitly allowed. Consequently, the Telnet 
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daemon failed to communicate with the attacker’s device and thwarted the remote login. The system 

also successfully protected against the DoS attack, owing to the failure to create a file for the simulated 

malware via wget or modify the file permissions using chmod. Furthermore, the Telnet client failed to 

read a necessary configuration file, and the MAC system thwarted the infection. Even when the 

attacker had root privileges, every attack stage was thwarted, similar to TOMOYO Linux. 

Customization Strategy 2: We defined labels for each applicable program on Smack, using these 

labels as subjects and objects for their executable files. The new labels implemented the following 

rules: 

1. Label “_” can access all newly defined labels. 

2. All labels, except those assigned as objects for the applicable programs, can read and execute all 

newly defined labels. 

3. Labels assigned as subjects for applicable programs can access label “_” and all newly defined 

labels, provided no other rules prohibit this access. 

4. Labels used as subjects for Telnet daemons are prohibited from accessing labels assigned as 

objects for wget, chmod, and Telnet clients. (The label assigned as subject for the Telnet 

daemon is inherited by a bash shell, which is automatically provided to an attacker who logs in 

remotely.) 

5. All other accesses follow the default settings. 

After defining the new labels, we covered all combinations of these labels with the default labels 

(“_,” “^”, “*” (star), “?” (huh), “@” (web)) and assigned all permissions (rwxat) to each combination. 

When a combination of subject, object, and operation requires denial in the covered combinations, the 

corresponding description or an unnecessary permission was deleted. Consequently, the results 

obtained for DoS and infection were consistent using Customization Strategy 1. 

In TOMOYO Linux, we implemented rules that permit all accesses except those prohibited on 

control target operations. We used groups that allowed all operations except those related to control 

targets for the applicable domains. For the bash domain, which is automatically provided to an attacker 

logging in remotely, we added two specific rules to allow all operations except the execution of the 

wget, chmod, and Telnet clients. We defined this group (group 1) to permit all operations, excluding 

those related to the control targets, with any option. We created 12 groups using various options, 

including file permissions and IP addresses. Although we used wildcards to reduce the number of 

rules, describing all path names except those for wget, chmod, and Telnet clients required 15 lines of 

rules owing to descriptions excluding particular path names. Additionally, there were instances where 

proper system operations were prevented owing to MAC activation on domains derived from bash 

without specific rules because domains would transition to wildcard-based domains by default. 

Therefore, we need to cover domains that include wildcards and configure them to prevent the 

activation of MAC and domain transitions. In the covered domains, MAC can be disabled by adding 

use_profile 0, on a single line. As a result, bash failed to execute wget, chmod, and Telnet clients, and 

the MAC system thwarted both the DoS and infection attacks. 

In AppArmor, we first added rules that permit all operations to the Telnet daemon profile and then 

added rules on accesses that should be denied. AppArmor has expressions to specify the types of 

operations to restrict, including capability, network, and file. These expressions allow all operations of 

the applicable types by adding a rule-like file. We added rules with the aforementioned expressions to 

the 12 operations supported by the experimental environment and allowed all operations. 

Subsequently, we added rules of the form, such as audit deny pathname x, on the path names of 
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execution files of applicable programs and restricted their execution. As a result of this customization, 

we obtained the same results as those for TOMOYO Linux. 

Customization Strategy 3: None of these MAC systems can identify files downloaded by 

attackers who log in remotely using Telnet via the wget directory. Therefore, we configured security 

policies in Smack so that wget inherits its labels as a subject for the files it creates. We customized its 

settings to enable the following rules based on the customization strategy:  

1. Label assigned to wget as subjects can access the label “@” in addition. 

2. Label “@” can access labels assigned as subjects to wget in addition. 

3. Labels assigned as subjects to Telnet daemons can access labels assigned as objects for wget, 

chmod, and Telnet client, but lose permission to access labels assigned as subjects to wget. 

4. Labels assigned as subjects to chmod lose permission to access labels assigned as subjects to 

wget. 

Additionally, the communication destination needs to be labeled with label “@” using echo IP 

address @ > /sys/fs/smackfs/netlabel for the proper operation of wget. Consequently, the DoS attack 

was thwarted owing to the failure of chmod to read the simulated malware. The DoS attack was also 

thwarted because the bash failed to read or execute the malware. However, these protections become 

ineffective if an attacker logs in remotely as the root user, similar to results with other customization 

strategies. 

In TOMOYO Linux, we set up a directory for wget to download files (download directory). We 

added rules to prohibit the bash from being used by an attacker who logs in remotely via Telnet from 

downloading files outside this directory using wget and executing files in it. Moreover, we added rules 

to prevent chmod from accessing files in the download directory. A domain corresponding to wget 

uses a group (Group 2) that allows all operations except file writing and creation. We added three lines 

of rules that limit file writing and creation are limited to the download directory. Additionally, a 

domain corresponding to chmod uses a group (Group 3) that allows all operations except the 

modification of file permissions. We added two lines of rules that allow the modification of file 

permissions only outside of the download directory. A domain corresponding to bash uses Group 1. 

We added four lines of rules that allow the execution of wget and chmod, and access to all path names, 

except for the executable files of these commands and inside the download directory. The download 

directory can be described with four lines of rules, whereas all path names outside the download 

directory require 16 lines of additional rules. In addition, it required 23 lines of rules to describe all 

path names, excluding those inside the download directory and the executable files of wget and 

chmod. As a result, we confirmed that wget failed to download the simulated malware outside the 

download directory. Furthermore, we confirmed that chmod could not modify file permissions, and the 

execution of the downloaded malware within the download directory was blocked. Consequently, 

TOMOYO Linux thwarted the DoS attack. 

We added rules for AppArmor using the same strategy as in TOMOYO Linux. Similar to 

Customization Strategy 2, we added rules that allowed all operations at the beginning of the profile of 

Telnet daemon. The execution of download files in the download directory by the Telnet daemon can 

be restricted using the rule audit deny download_directory/** x. To add rules for wget and chmod in 

the profile of the Telnet daemon as child processes, we added rules with the format path name 

rwlkmcx. In the profiles of wget and chmod, as child processes of the Telnet daemon written using the 

aforementioned method, we added rules that allow all operations. In the wget, all files outside the 

download directory were covered by listing files in the root directory and all path names with different 
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characters in the same position (except for the first character /) as those in the download directory, 

because it cannot describe all path names other than specific ones. In chmod, the download directory 

can be written to with a single line using the aforementioned rule. Therefore, the download of the 

simulated malware failed because of the failure of mknod when the malware was downloaded outside 

the download directory. It also prevented chmod from modifying the file permissions of the malware 

downloaded in the download directory. Moreover, the bash cannot execute malware in the download 

directory. Consequently, it succeeded in protecting against DoS. 

From these results, we confirm that TOMOYO Linux and AppArmor are effective against attacks 

by actual IoT malware when they have properly customized security policies. We showed that these 

MAC systems are effective in protecting against IoT malware even when rules are installed based on a 

strategy that denies the execution or use of programs exploited by attackers without specifying any 

conditions. It is also clarified that a strategy which prohibits the execution of programs used by 

attackers when their parent process is an entry-point program for attackers, such as the Telnet daemon, 

is effective. Moreover, we confirmed that these MAC systems can restrict operations to files created 

by programs executed by attackers using a defined download directory. However, there are cases in 

which some attacks succeed under any strategy owing to MAC bypass by root privileges in Smack. 

Therefore, Smack is less likely to protect systems compared to other MAC systems when an attacker 

gains root privileges or logs in remotely as a root user. 

5 Investigation on the Cost of Updating Security Policies  

Section 4 does not clarify the factors that can impact the deployment of MAC systems on IoT devices 

from the perspective of the costs associated with updating security policies. Thus, this section presents 

results that comprehensively investigate the security policies customized in Section 4 from this 

perspective. 

5.1 Investigation Strategy 

This analysis compares the security policy rules added in Section 4 and the work required for 

customization to investigate the cost of updating security policies for protecting systems against actual 

IoT malware. 

We investigated the number of rules that need to be added to protect systems against actual IoT 

malware in each MAC system. We also examined the work required to update the security policies. 

Based on these aspects, we conducted a comprehensive analysis of the factors that impact the cost of 

updating security policies. 

5.2 Investigation Methods 

We confirm the number of lines and rules that indicate the combination of subject, object, and 

operation (rules on access permissions) are added to the security policies based on each customization 

strategy, using this as a quantitative criterion for the number of rules in the security policies. Lines not 

directly related to access permissions, such as the configuration of domain transitions, are excluded 

from the tabulation of rules on access permissions. In TOMOYO Linux, we tabulated rules on access 

permissions by extracting newly defined groups and excluding those related to operational options. We 

tabulated a rule written in the form of use_profile as one line of rules on access permissions, because it 

is used for enabling or disabling MAC. In AppArmor, we tabulated a rule written in the form of a file 

as one line of rule, excluding rules related to domain transitions in the profiles of child processes. 
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We summarize the investigation results on required works, such as the coverage of possible 

accesses and the availability of deny listings for each MAC system as qualitative criteria for the cost of 

customization. Based on these results, we discuss the potential updating costs associated with each 

MAC system. 

5.3 Investigation Results 

5.3.1 Comparison of the Number of Rules Added to Security Policies 

Table 15 shows the number of lines and rules added or updated in the customized security policies. In 

Customization Strategy 1, Smack did not add new rules but only modified labels. TOMOYO Linux 

modified the value of use_profile and updated four rules. AppArmor had a relatively large number of 

lines added; however, its updating cost was low because the rules were automatically generated by its 

tool. In Customization Strategy 2, the number of added rules for AppArmor remained relatively stable, 

while those for Smack and TOMOYO Linux increased significantly. In Customization Strategy 3, the 

number of added rules increased significantly for AppArmor, but it did not exceed that of Smack. In 

Smack, the increment in the added rules in this strategy was only two compared to Customization 

Strategy 2. The number of rules added for TOMOYO Linux increased more significantly compared to 

Customization Strategy 2. 

Table 15: The Numbers of Lines/Rules Added or Updated in Customized Security Policies 

MAC 

System 

Customization 

Strategy 1 

Customization 

Strategy 2 

Customization 

Strategy 3 

Smack 0/0 53/53 55/55 

TOMOYO 

Linux 

4/4 100/41 177/107 

AppArmor 36/4 25/15 74/51 

From the results, the updating cost is generally lower for any MAC system when Customization 

Strategy 1 is adopted. However, Smack and TOMOYO Linux may incur higher updating costs owing 

to the significant increase in rules when adding them to specify fine access conditions, such as in 

Customization Strategies 2 and 3. In contrast, AppArmor incurs a lower updating cost compared to 

TOMOYO Linux, owing to fewer rules required. 

5.3.2 Comparison of Required Works for Customization and Cost for Each Work 

Table 16 lists the work required for security policy customization for each MAC system. Table 17 lists 

the availability of the deny listings. Smack can use a deny listing when applying Customization 

Strategy 1, because it does not require additional rules for restricting programs. However, when 

applying Customization Strategies 2 or 3, it must use and allow listing to define rules covering label 

combinations, owing to the need to add rules and the absence of syntax for denying specified accesses. 

Additionally, increasing the number of newly defined labels can rapidly increase the number of label 

combinations and rules. TOMOYO Linux can easily create security policies using deny listing when it 

applies Customization Strategy 1 because its tool enables MAC restrictions for each program. In 

contrast, when using Customization Strategies 2 or 3, it must cover and describe rules that allow all 

accesses on restriction targets and accesses that should not be restricted because it does not prepare 

syntax for denying specified accesses. When describing rules, it must be considered that TOMOYO 

Linux struggles with describing all path names while excluding specified ones. Additionally, domains 

to be restricted must be included in the security policies for any customization policy. Therefore, 
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attack simulation is required before customization, and the domains must be identified from the 

collected logs. AppArmor can easily allow all accesses using file syntax. When it applying 

Customization Strategies 1 or 2, it can easily create security policies based on deny listings using 

denial syntax. However, it lacks syntax for describing all path names while excluding specified ones 

on a single line, as shown in Customization Strategy 3. 

Table 16: Required Works for Security Policy Customization 

MAC 

System 

Overall Coverage 

of Accesses 

Description to Allow All 

Accesses 

Log Retrieval at 

Attack 

Simulation 

Smack Required Not Required Not Required 

TOMOYO 

Linux 

Required Not Required Required 

AppArmor Not Required Required Not Required 

Table 17: Availability of Deny Listing in the Customization of Security Policies 

MAC System Available Not Available 

Smack Specifying Programs to Be Restricted Customizing Rules for 

Programs to Be Restricted 

TOMOYO Linux Specifying Programs to Be Restricted Customizing Rules for 

Programs to Be Restricted 

AppArmor Specifying Programs to Be Restricted, 

Customizing Rules for Programs to Be 

Restricted 

- 

In summary, we have confirmed that Smack and TOMOYO Linux can only use deny listings in 

limited cases. When deny listings cannot be used, they must cover and verify all possible accesses. 

Consequently, this results in a higher cost for creating rules. Additionally, it is necessary to describe 

the rules created in security policies according to the syntax of each MAC system, owing to the need to 

verify label combinations or the challenge of describing all path names while excluding specified path 

names. Hence, we conclude that the overall cost of customizing security policies for Smack and 

TOMOYO Linux is high, except in cases such as Customization Strategy 1. However, AppArmor can 

create rules using deny listings in most cases, except for the description of all path names, while 

excluding specified path names. Therefore, it does not require the coverage and verification of overall 

accesses and can explain how security policies control accesses by simply confirming the rules in the 

deny list. Hence, we conclude that the cost of updating security policies on AppArmor is significantly 

lower compared to other MAC systems. Furthermore, AppArmor has the potential to implement a 

syntax for describing all path names while excluding specified path names (Ubuntu Wiki, 2021). 

When it becomes able to describe all path names while excluding specified ones in one line, owing to 

this syntax, the cost of updating security policies is expected to be even lower. 

6 Discussion on the Impact of Combinations of Factors 

This section presents the results on the impact of the combinations of factors affecting MAC system 

adoption, as discussed in Sections 3, 4, and 5. 
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6.1 Combinations on the Applicability for IoT Devices 

It is challenging to update security policies during operation due to the prevalence of read-only file 

systems on many IoT devices (Liu et al., 2021). Additionally, updating IoT device software is costly, 

as automatic updates are not yet widespread (Akiyama et al., 2023). Consequently, updating security 

policies for IoT devices can be expensive. Moreover, MAC systems are more prone to 

misconfiguration compared to other security features and may interfere with proper system operation 

due to the inherent complexities and difficulties associated with their configuration. 

When security policies cannot be easily updated, systems that are affected by MAC systems may 

also face difficulties in being updated. This can lead to situations where MAC systems cannot be 

deployed to avoid these risks. Therefore, these issues are likely to occur in IoT devices. 

6.2 Combinations on the Protection Against IoT Malware 

IoT vendors frequently develop IoT devices using software components (e.g., SDKs and ODM 

devices) provided by chip manufacturers, as illustrated in Figure (Akiyama et al., 2023). Due to 

various technical or contractual constraints, there are instances where these components must be 

employed with their default settings (Akiyama et al., 2023). Consequently, under such constraints, 

only the default security settings of each MAC system can be utilized. However, as detailed in 

Subsection 4.2.1, MAC systems, with the exception of SELinux, are unable to effectively mitigate 

Mirai attacks when using their default configurations. 

Hence, MAC systems can be ineffective for protection when vendors cannot customize the default 

security policies owing to these constraints in IoT devices. Therefore, we assume that there are cases 

in which IoT vendors cannot adopt them because of this problem. These cases arise unless IoT vendors 

have the freedom to update the software components provided by chip vendors. 

6.3 Combination on the Cost to Update Security Policies 

In some cases, members of the same family of IoT malware may exploit different vulnerabilities or 

attack methods. When security policies are customized using deny listings, the rules added to protect 

against specified vulnerabilities may not always thwart attacks using other vulnerabilities or attack 

methods. Additionally, attackers may evade MAC controls by using methods such as downloading 

malware using curl instead of wget when the former is omitted from access control. Hence, denying a 

listing requires adding rules for each vulnerability, attack method, and command used by attackers. 

However, IoT vendors must manage an enormous number of vulnerabilities when adding rules that 

focus on specific vulnerabilities. More than 20,000 CVEs have been reported each year since 2021 

(cve.org, n.d.). 

Therefore, the cost of updating security policies is likely to be unacceptably large, even when 

vendors use deny listings to cover overall vulnerabilities and implement measures against them. 

Additionally, this cost may become even higher when IoT vendors consider covering attack methods 

or commands to be restricted, verifying whether the added rules can protect systems and managing 

constraints on resource consumption. We presume that this problem results in more cases where MAC 

systems are not adopted. 
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7 Related Work 

7.1 Applicability of MAC Systems Focusing Resources 

Numerous prior studies have investigated the applicability of MAC systems derived from resource 

consumption. Nakamura et al., (Nakamura et al., 2015) demonstrated that the default settings of 

SELinux resulted in memory usage and processing delays that were deemed unsuitable for IoT 

devices. However, their study did not evaluate the resource consumption of other MAC systems in the 

context of IoT devices. Zhang et al., (Zhang et al., 2021) assessed the file operation processing delays 

of major MAC systems within a PC environment, but did not explore their impact on IoT devices. In 

contrast, our research includes a performance analysis of all prominent MAC systems within an IoT 

device simulation environment. 

Additionally, research has explored the influence of file systems on MAC operations, which is 

another critical factor in determining the applicability of MAC systems. Vogel and Steinke (Vogel & 

Steinke, 2010) demonstrated that SELinux could be enabled on JFFS2 by patching the kernel prior to 

official xattr support, but their study did not address other file systems commonly used in IoT devices. 

In our work, we expanded on this by demonstrating the capability of per-file MAC systems to function 

effectively across a broader range of file systems. 

7.2 Protecting Systems Using MAC Systems 

Bugiel et al., (Bugiel et al., 2013) focused on defense mechanisms against attacks by enhancing 

SELinux for Android, demonstrating that their improved version of SELinux could defend against 

attacks exploiting real vulnerabilities. However, their research has two key limitations. Firstly, they did 

not examine the protectability of MAC systems only with default security policy settings. Secondly, 

their study did not address whether MAC systems could offer protection through simple security 

policy configurations, as opposed to more extensive extensions. In contrast, our research involved 

attack simulations based on the Mirai attack method, a representative IoT malware, to evaluate 

whether each MAC system could protect against such simulated attacks using either default or 

customized settings. 

There exist previous studies that create security policies using logs and show which rules are 

effective for protection. Zhu & Gehrmann (Zhu & Gehrmann, 2021) designed LiCSec to generate 

profiles for AppArmor. Zhu et al., (Zhu et al., 2023) improved LiCSec for container environment and 

described which access denial rule contributed to protecting systems on thwarted vulnerabilities. 

However, these studies did not clarify how to describe equivalent rules in other MAC systems. We 

investigated which rules should be added to protect against Mirai on Smack, TOMOYO Linux, and 

AppArmor targeting protection for IoT devices. 

Other studies built security policies using allow listing. Jiang et al., (Jiang et al., 2023) showed 

specific and detailed procedure for customizing security policies on SELinux. On the other hand, they 

did not evaluate which rules are effective for protection in the procedure. Dunlap et al., (Dunlap, 2022) 

clarified excessive or lacking permissions on the security policies of snap and flatpak by manual 

application tests. However, this work targeted repositories for desktop systems and its investigation 

results cannot be applied to IoT devices. A literature (Farrow, 2018) described how Netflix created 

security policies on SELinux using numerous logs. This method may not be applied easily because it 

assumes the use of huge logs. In this study, we provided a method to customize security policies using 

deny listing but without numerous logs on Smack, TOMOYO Linux, and AppArmor to protect against 
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Mirai on IoT devices and showed whether deny listing is effective from the aspects of protection and 

updating cost. 

7.3 Cost to Update or Operate Security Policies on MAC Systems 

Akiyama et al., (Akiyama et al., 2023) showed that verification cost is one of the challenges for the 

deployment of security features through a vendor interview as a previous study on the operation cost 

of MAC systems. However, they did not clarify how much it costs to verify security policies. 

Additionally, they did not sufficiently investigate what work is the cause of the large cost to customize 

and operate security policies. We revealed how many lines and rules are added in each MAC system 

and customization strategy to protect IoT devices against Mirai. Moreover, we compared required 

works for policy customization and the availability of deny listing. 

There exists a study that designed a programmable notation for security policies to decrease the 

updating cost of security policies and improve explanatory of security policies. Belair et al., designed a 

MAC system based on LSM as SNAPPY (Belair et al., 2021) and showed that their MAC system can 

measure against vulnerabilities by adding a few to a dozen lines of rules. However, it needs the 

deployment of eBPF and their own LSM, which is not merged to the mainline kernel. In this study, we 

focused on deny listing as a method to both reduce costs to update security policies and improve 

explanatory. 

8 Conclusion 

In this study, we present the findings of our investigation into the factors that prevent the introduction 

of LSM-based secure OSs into IoT devices, as well as an analysis of the ability of LSM-based secure 

OSs to protect IoT devices from IoT malware attacks. In our investigation of the factors that prevent 

the introduction of LSM-based secure OSs into IoT devices, we conducted a comprehensive analysis 

of the following factors: kernel version, CPU architecture, BusyBox support, memory consumption, 

and file system support. Furthermore, we evaluated the influence of the combination of multiple 

factors on the feasibility of implementation. 

Furthermore, we investigated whether it is feasible to protect against attack simulations using the 

Mirai attack method by examining the capabilities of the default security policies of each secure OS. In 

the case of secure OSs that are unable to prevent attacks using the default security policies, we 

presented methods for updating the security policies and the associated costs, as well as strategies for 

utilizing LSM-based secure OSs to provide protection for IoT devices. 

As a result, we revealed that MAC systems cannot be applied in certain cases, primarily because of 

resource consumption, file systems, and security policy settings. Additionally, we clarified that the 

cost of fixing security policies is larger in Smack and TOMOYO Linux than in AppArmor, 

particularly in terms of the number of added rules and the required work. 

Moreover, we investigated cases in which combinations of these factors could impact on the 

deployment of MAC systems in IoT devices. First, we identified that more cases occur where MAC 

systems are neither adopted to avoid the risk of improper operation nor customized, because their 

settings cannot be updated during operation owing to technical reasons in many IoT devices. Second, 

there could be cases in which MAC systems, except for SELinux, fail to effectively protect IoT 

devices because they rely solely on the default security policy settings, constrained by the development 

practices within the IoT supply chain. Finally, we consider cases where, even with a deny listing, the 



Effectiveness of MAC Systems based on LSM and their 

Security Policy Configuration for Protecting IoT Devices 
                                                                 Masato Miki et al. 

 

313 

cost of fixing security policies may be unreasonable in IoT devices because MAC systems need to add 

rules whenever new vulnerabilities are identified. 

In summary, this study clarified the range of factors that can impact the adoption of MAC systems 

in IoT devices. Consequently, we expect IoT vendors to more easily determine which MAC systems 

they can adopt for developing IoT devices based on the findings of this study. We also anticipate that 

they will be able to take more appropriate measures when adopting MAC systems. Additionally, this 

study revealed that there are issues, such as the specifications of MAC systems or the software 

installed on IoT devices, which IoT vendors cannot resolve independently. Based on our findings, we 

expect the developers of MAC systems and software used in IoT devices to modify their software to 

facilitate the deployment of MAC systems. In particular, we expect AppArmor developers to 

implement syntax that allows for the description of overall path names, while excluding specified path 

names in a single line, leading to more cases where the fixing cost of security policies on AppArmor is 

acceptable. 
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