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Abstract 

Distributed machine learning offers more practical and efficient use cases than conventional 

centralized machine learning. Nevertheless, not all security needs can be satisfied by distributed 

learning. In medical industry, more and more individuals are adopting Internet of Things (IoT) 

devices to capture their personal data for medical diagnosis and treatment. Through the use of 

federated learning, it is possible to secure user data while simultaneously training on massive 

amounts of dispersed data. The heterogeneity of client data is a well-known difficulty in federated 

learning (FL) contexts. The solution that developed was customized federated learning (PFL), a 

framework for developing local models for clients' requirements. It is common practice in PFL to 

construct two models at once, one for local usage and one for global use; the first is used for 

generalization, while the second is used to inform and update the first one. To build better 

customized models, it is vital to realize that both global and local models may be enhanced to 

increase their generalization potential. Secure heterogeneity medical data collection and training has 

emerged as the top priority in FL. In order to address statistical and system heterogeneity, this work 

presents a novel hybrid federated learning approach that uses FedProx: FedSplit Algorithm. The 

presence and severity of data heterogeneity determine the kind of federated learning approaches that 

could be necessary. The FedProx method averages the changes to the local model if the user data is 

horizontally partitioned, which means that different samples have the same features. Techniques 

such as FedSplit may be required to align the feature spaces or separate the model layers when 

working with data sources that are vertically partitioned, indicating they contain unique features but 

overlap samples. As a result of statistical variability, learning across data from different distributions 

is challenging, and device-level systems limits mean that each device can only do so much work, 

the FedProx: FedSplit model assures convergence for our method. More specifically, as compared 

to the present FL model, FedProx: FedSplit shows far more steady and accurate convergence 

behavior in very diverse conditions, increasing overall test accuracy by an average of 35%.  

Keywords: Statistical Heterogeneity, System Heterogeneity, Federated Learning, IoT Data, 

Medical Data. 
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1 Introduction 

Many domains have benefited from machine learning's innovations, including voice recognition, 

computer vision and natural language processing. A vast amount of training data is essential for machine 

learning techniques, especially those built on deep neural networks (DNNs), since these approaches are 

data-driven. Edge devices, including smartphones, sensors, cars, and medical equipment, are a typical 

source of this kind of data. The standard approach is that information acquired by mobile devices should 

be sent to a central server which is located in the cloud for processing. Uploading datasets like images, 

signals and text messages might be problematic because of privacy and location issues since they often 

include personal information (Kutlu & Camgözlü, 2021). In addition, the communication channels 

between the server and the edge devices might become significantly overloaded when transferring huge 

information. One solution to these problems is mobile edge computing, which makes use of the 

processing power of devices in the network's edge to conduct training locally, without requiring data 

sharing (Chen & Ran, 2019). Federated learning is a new approach to enable learning at the edge 

(Mohandas et al., 2024). It involves distributed learning with centralized aggregations, managed by one 

or more edge servers (McMahan et al., 2017). There has been an increase in studies on federated learning 

in recent years (Kairouz et al., 2019). Important and interdependent parts of these systems are                    

server-device communication and learning from dispersed data (Li et al., 2020; Sindhusaranya et al., 

2023; Torroglosa et al., 2017; Wang et al., 2020). 

When it comes to medical applications, every healthcare organization has its own data and may have 

unique needs that necessitate a customized model. There is certain to be data and model heterogeneity 

in healthcare industry that build customized models for each task. Due to privacy reasons, hospitals in 

this setting are hesitate to provide their data and model architecture. Consequently, an extensive number 

of approaches have been proposed for carrying out FL on such diverse medial datasets. An iterative 

training method is the basis of federated learning (McMahan et al., 2017; Udayakumar et al., 2023). In 

order to create a single global model, the server compiles all of the incoming updates and then returns 

its parameters to the devices at the edge. Thus, in order to achieve federated learning, edge devices just 

need to communicate the parameters of their trained models, without revealing any private data. Because 

of this quality, federated learning is an attractive option for applications with many organizations who 

need to learn from data while adhering to stringent privacy regulations (Li et al., 2020). Following the 

recommendation of Google AI researchers (McMahan et al., 2017), federated learning has been used to 

improve Gboard's next-word prediction models (Hard et al., 2018; Xu et al., 2021; Qu et al., 2020; Kwon 

et al., 2020; Brik et al., 2020).  

Although federated learning's decentralized and shared structure presents challenges not seen in 

traditional centralized deep learning, these challenges are closely connected to classical signal 

processing and communications research. A key component of federated learning's success is expected 

to involve the development of specialized signal processing algorithms. Actually, there have been a 

number of new approaches developed that are federated learning-oriented, and they all stem from              

well-established ideas in communications and signal processing. Methods such as reducing the number 

of messages sent during federated learning through quantization and compression (Lin et al., 2017; 

Alistarh et al., 2017; Shlezinger et al., 2017; Zheng et al., 2020), creating useful and wireless 

computation resources that allow efficient federated gathering over shared wireless channels (Zhu et al., 

2019; Amiri & Gündüz, 2020; Sery & Cohen, 2020), and establishing resource allocation schemes that 

take federated learning into account to guarantee reliable communication between training entities (Chen 

et al., 2021; Dinh et al., 2020) are some of these approaches. 
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In traditional centralized deep learning, the server has access to the whole dataset. However, federated 

learning works differently. As a result, traditional federated learning has a number of fundamental 

difficulties. Due to statistical heterogeneity, it is possible for individual model instances trained on 

different edge devices to exhibit bias. Therefore, the global model's intended use in inference may not 

be reflected in the typical approach based on averaging the training updates. The availability and 

behaviour of the many user devices involved in federated learning might vary greatly. This kind of 

variation, called behaviour heterogeneity, might impact the device status-dependent learning process. 

This research introduced a new hybrid algorithm called FedProx: FedSplit Algorithm for safe data 

transmission via the cloud. Its purpose is to overcome statistical and technological heterogeneity.  

Key Contribution 

• To address heterogeneity in federated networks, we provide a novel hybrid methodology called 

FedProx: FedSplit Algorithm in this study.  

• The novel FedProx learning approach will be proposed to avoid the convergence behaviour due 

to the statistical heterogeneity. 

• To minimize the sum of local loss functions of devices using the Fedspilit algorithm in order to 

build a shared global model.  

• The proposed model will be compared with current methods/ models on various available 

datasets.  

2 Related Study 

An essential and often used technique in FL, FedAvg (McMahan et al., 2017), determines the global 

model by averaging the client-side local models. One of its variations, FedAvgM (Hsu et al., 2019), 

improves the global model update by adding server-side Nesterov momentum. Based on the quantity of 

local processing, FedNova (Kutlu & Camgözlü, 2021) normalizes aggregate weights. Global 

aggregation is explicitly not applied to the parameters of the batch normalization layer by FedBN (Li et 

al., 2021). To reduce the impact of client drift, FedProx (Li et al., 2020) uses a proximal term in local 

training loss, while SCAFFOLD (Karimireddy et al., 2020) uses variance reduction and a control variate 

approach. Clients may bring their local training loss regularization up to date using FedDyn (Acar et al., 

2021) so it matches the global empirical loss more closely. As an alternative, FedDC (Gao et al., 2022) 

proposes including a drift variable into model learning in order to actively reduce disparities between 

regional and global characteristics. To make the global and local feature representations more 

comparable, MOON (Li et al., 2021) use model-contrastive regularization. On the other hand, FedDF 

(Lin et al., 2020) and FedBE (Chen & Chao, 2020) both aim to incorporate information into the global 

model via knowledge distillation-based model fusion and Bayesian model ensemble, respectively. With 

FedGen (Zhu et al., 2021), clients may learn from the server-side generator model, this eliminates the 

requirement for an unlabelled transfer dataset. 

Communication effectiveness, confidentiality preservation, attack defence, and federated fairness are 

some of the open issues and difficulties surveyed (Kairouz et al., 2019), who also cover current 

improvements in federated learning. An approach-and-challenge classification methodology is provided 

(Wahab et al., 2021). Federation learning systems are categorized (Li et al., 2021) according to six 

factors: data distribution, machine learning model, privacy method, communication architecture, 

federation size, and federated motivation. In their research on federated learning in mobile edge 
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networks, (Lim et al., 2020) classified current approaches as either addressing the core issues with 

federated learning or finding solutions to difficulties with edge computing via federated learning. In their 

description of the primary challenges encountered by federated learning in wireless communication 

contexts, (Niknam et al., 2020) primarily list and explore several potential uses of federated learning in 

5G networks. A number of studies have investigated federated learning for Internet of Things networks 

(Nguyen et al., 2021). Data offloading and caching, threat detection, smart healthcare, smart 

transportation, unmanned aerial vehicles, and other Internet of Things (IoT) services and applications 

are surveyed and analyzed (Nguyen et al., 2021). Yang et al., (2019) classify federated learning as either 

horizontal, vertical, or federated transfer learning based on the data distribution properties. However, 

they fail to provide a comprehensive overview and classification of current approaches, instead focusing 

on introducing the idea and practical use of federated learning. Each kind of FL heterogeneity is 

addressed in (Gao et al., 2022), which classifies and introduces situations, aims, and approaches for data 

space, statistics, systems, and models, respectively. Despite surveying the literature on managing Non-

IID data and analysing its influence on federated learning, (Zhu et al., 2021) fail to address additional 

heterogeneity concerns and relevant studies. To better understand how to train customized models to 

deal with statistical heterogeneity, (Tan et al., 2022) undertake a systematic assessment of current 

approaches in the area of personalized federated learning. However, the difficulties of federated learning 

are not thoroughly examined, and a thorough taxonomy is missing. Intelligent Internet of Things (IoT) 

applications may benefit from the cloud-edge architecture proposed (Wu et al., 2020), which offers a 

customizable federated learning framework. Although diverse federated learning is vast, their 

categorization of current approaches is inadequate. Communication efficiency, privacy preservation, 

assault defense, and federated fairness are some of the open issues and difficulties surveyed Kairouz et 

al., 2019), who also cover current improvements in federated learning. An approach-and-challenge 

categorization methodology is provided (Wahab et al., 2021). federation learning systems are 

categorized (Li et al., 2021) according to six factors: data distribution, machine learning model, privacy 

method, communication architecture, federation size, and federated motivation. In their research on 

federated learning in mobile edge networks, (Lim et al., 2020) classified current approaches as either 

addressing the core issues with federated learning or finding solutions to difficulties with edge 

computing via federated learning. In their description of the primary challenges encountered by 

federated learning in wireless communication contexts, (Niknam et al., 2020) primarily list and explore 

several potential uses of federated learning in 5G networks. A number of studies have investigated 

federated learning for Internet of Things networks (Nguyen et al., 2021). Data offloading and caching, 

threat detection, smart healthcare, smart transportation, unmanned aerial vehicles, and other Internet of 

Things (IoT) services and applications are surveyed and analyzed (Nguyen et al., 2021). Yang et al., 

(2019) classify federated learning as either horizontal, vertical, or federated transfer learning based on 

the data distribution properties. However, they fail to provide a comprehensive overview and 

categorization of current approaches, instead focusing on introducing the idea and practical use of 

federated learning. Each kind of FL heterogeneity is addressed in (Gao et al., 2022), which classifies and 

introduces situations, aims, and approaches for data space, statistics, systems, and models, respectively. 

Despite surveying the literature on managing Non-IID data and analysing its influence on federated 

learning, (Zhu et al., 2021) fail to address additional heterogeneity concerns and relevant studies. To 

better understand how to train customized models to deal with statistical heterogeneity, (Tan et al., 2022) 

undertake a systematic assessment of current approaches in the area of personalized federated learning. 

However, the difficulties of federated learning are not thoroughly examined, and a thorough taxonomy 

is missing. Intelligent Internet of Things (IoT) applications may benefit from the cloud-edge architecture 

proposed (Wu et al., 2020), which offers a customizable federated learning framework. Although diverse 
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federated learning is vast, their categorization of current approaches is inadequate. It is difficult for 

readers to stay updated on developments in this sector since the current approaches are various and differ 

greatly in their own settings without a standard setting. 

Challenges of Federated Learning in Medical Application 

Statistical Heterogeneity: When there is statistical heterogeneity, it means that distinct groups of 

healthcare organization generate data in different ways. Since the medical data accessible at each user 

device is likely to be customized towards the unique user, this is usually the case with federated learning. 

Due to statistical heterogeneity, it is possible for individual model instances trained on different edge 

devices to show bias. Therefore, the traditional approach that uses an average of the training updates 

may not be the best way to use the global model for inference.  

System Heterogeneity: The availability and behavior of the many healthcare organization devices 

involved in federated learning might vary greatly. The device-dependent learning process may be 

impacted by this kind of heterogeneity, which is called behavior heterogeneity. As an example, when 

healthcare organization’s devices are idle, charging, or linked to an unmetered network like Wi-Fi, the 

federated learning process might be designed to just participate individuals. Therefore, there may be 

inconsistency in the training group's involvement due to patients potential unreliability and the fact that 

they can drop out at any moment. In federated learning, the healthcare organization’s devices involved 

differ in terms of processing capacity and energy resources, as opposed to centralized learning, which 

uses a computationally capable server to conduct training.  

3 Basics of Federated Learning in Signal Transmission  

There are primarily three phases to the federated learning process: model distribution, local training, and 

global aggregation. However, as mentioned earlier, the last step of global aggregation is primarily 

responsible for the specific difficulties of federated learning. Specifically, when comparing the 

transmission from users to the server to the distribution phase, the last stage is far less impacted by 

heterogeneity concerns since it comprises broadcasting the global model from the server to the users. 

Additionally, unlike the aggregation step, this broadcasting occurs on the downlink channel, which 

usually has lower capacity limits than the uplink channel and is therefore less impacted by 

communication limitations. In the local training stage, which updates the model using the data and the 

prior model, traditional optimizers like SGD and its variations are usually used. The majority of 

problems with federated learning therefore occur during the global aggregate phase. It is possible to 

think of each of the three primary steps in the global aggregate as a separate signal processing and/or 

communication task.  

The three steps involved in the global learning technique are as follows: 1) edge user processing and 

encoding of the local training result; 2) edge user transmission of the outcomes via shared wireless 

channels; and 3) server processing and merging of the received signals. Figure 1 shows a schematic of 

the federated learning process that incorporates this stage-by-stage analysis. 
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Figure 1: Federated Learning Process in Signal Transmission 

1) Local Updating and Encoding: In the first phase, prior to transmission, the results of the training 

operation are processed locally on the users' end. This function is crucial for securely and reliably 

transmitting model changes to the server via a rate-limited shared connection. The local processing, as 

shown in Figure 1, involves taking the local model for user 𝑖 at time 𝑡, 𝜃𝑡
𝑖, and using it to create the 

channel input in the transmission stage, which is represented by the mapping in equation (1): 

𝑆𝑡
𝑖  =  ∅𝑖 (𝜃𝑡

𝑖) (1) 

The need to encode and compress the model updates should be addressed in the design of the mapping 

(9). This may be accomplished by implementing stochastic quantization and sparsification of the model 

updates to reduce the communication burden by setting ∅𝑖 (). In addition, ∅𝑖 () may be designed to 

enhance data privacy preservation by using the algorithmic basis of differential privacy.  

2) Transmission of Uplink: It is common practice to use a wireless channel to transfer the processed 

changes to the server for global updating. In order to achieve this goal, the mapping requires each user 

to create their own channel input, 𝑥𝑡
𝑖 , in order to transmit 𝑆𝑡

𝑖. Equation (2) shows the relation between 

𝑥𝑡
𝑖  𝑎𝑛𝑑 𝑆𝑡

𝑖. 

𝑥𝑡
𝑖  =  𝜑𝑖(𝑆𝑡

𝑖) (2) 

As shown in Figure 1, the conditional distribution 𝑃(𝑦𝑡|{𝑥𝑡
𝑖}

𝑖
) directs the statistical connection 

between the channel input 𝑥𝑡
𝑖 and the output 𝑦𝑡  received at the server side. So, the users transmit channel 

inputs to the server, which gets a noisy version of those inputs. The server's channel output 𝑦𝑡  and the 

encoded model updates 𝑆𝑡
𝑖 are related according to the transmission mapping and channel characteristics. 

Federated learning via shared wireless channels is usually at the center of transmission-phase 

approaches. The goal here is to provide dependable connectivity and high throughput without 

significantly slowing down the learning process overall. To do this, two primary factors must be 

considered: Priority one is determining how the channel's capacity and transmission time will be 

distributed. When deciding which users to include in the current round Gt, user selection and scheduling 

is a subset of channel resource division. Additionally, users may take use of the interference that results 
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from using the wireless media to their greatest potential by taking advantage of its shared nature as a 

kind of over-the-air functional computing. 

3) Global Merging: If the server wants to update the global model, it utilizes the information on 

{𝜃𝑡
𝑖}

𝑖=1

𝑁
found in its observed channel output 𝑦𝑡. The server performs this action and Equation (3) 

represents the mapping function. 

𝜃𝑡 =  ɸ (𝑦𝑡) (3) 

Here, as shown in Figure 1, the server estimates a combined global model by using the channel 

output, which includes information about the individual model updates. This mapping can be used to 

counteract channel noise and fading, reduce the impact of statistical heterogeneity on the global model 

during inference, and protect against malicious devices using Byzantine-robust aggregation. 

4 FEDPROX: The FEDSPLIT Algorithm 

As far as we are aware, the current approaches attempt to adequately handle the dual issues of system 

heterogeneity and statistical heterogeneity of medical data in FL. This study presents a technique called 

FedProx:FedSplit that takes use of both statistical and system heterogeneity of medical data at the same 

time. Its purpose is to improve the global model's efficiency in FL by addressing both issues. The 

proposed hybrid model has two advantages: By limiting the local updates to be more similar to the 

original (global) model, it solves the problem of statistical heterogeneity (1) without requiring the 

manual setting of the number of local epochs using the FedSplit method. (2) Using the FedProx method, 

it enables the safe incorporation of varying quantities of local work brought about by system 

heterogeneity. In the section that follows, we provide a summary of the FedProx:FedSplit algorithm's 

phases. 

4.1 FedProx Based Averaging Procedure 

Similar to FedAvg, our proposed architecture, FedProx, selects a selection of devices for local updates, 

which are then averaged to provide a global update at each round. Nevertheless, FedProx implements 

the following crucial but straightforward changes, which lead to significant empirical gains and enable 

us to ensure convergence for the system heterogeneity. 

Tolerating Partial Work 

As was previously mentioned, various devices in federated networks often have various resource 

limitations with regard to their battery life, network connectivity, and computational capabilities. 

Therefore, requiring every device to run the same number of local epochs, 𝐸, or accomplish a same 

amount of work, as in FedAvg, is impractical. By permitting varying amounts of work to be completed 

locally across devices according to their available systems resources, we generalize FedAvg in FedProx 

and then aggregate the partial solutions received by the stragglers (as opposed to discarding these 

devices). To put it another way, FedProx implicitly accounts for varied 𝛾 for various devices and 

iterations rather than assuming a constant 𝛾 for all devices throughout the training phase. For device 𝑘 

at iteration t below, we define 𝛾𝑡
𝑘 -inexactness clearly. 
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Proximal Term 

Although accepting uneven workloads across devices might mitigate the adverse effects of system 

heterogeneity, an excessive number of local updates could possibly lead to method divergence because 

of the heterogeneous data below. To effectively restrict the influence of variable local updates, we 

propose expanding the local subproblem by adding a proximal term. Specifically, device 𝑘 employs its 

preferred local solution to roughly minimize the goal ℎ𝑘, rather than just minimizing the local function 

𝐹𝑘(·). Equation (4) shows the details of this function. 

min
𝑤

ℎ𝑘(𝑤; 𝑤𝑡) =  𝐹𝑘(𝑤) +
𝜇

2
 ‖𝑤 − 𝑤𝑡‖2 (4 ) 

We see that proximal words, like the one above, are often used tools in data optimization. One key 

difference in the proposed use is that we indicate, investigate, and evaluate this term with the intention 

of addressing heterogeneity in federated networks. We consider a subset of devices active at each round 

and deal with non-IID partitioned data in a distributed setting, which is one of the distinguishing 

characteristics of our study. A number of assumptions are necessary for describing such a framework in 

real-world federated settings. By modifying the local subproblem in FedProx, we achieve more stable 

and robust convergence for heterogeneous datasets than the original FedAvg. Our results demonstrate 

that enabling partial work is beneficial in systems with heterogeneity (Section 5). Method 1 demonstrates 

the FedProx approach for handling system heterogeneity.  

------------------------------------------------------------------------------------------------------------------------------- 

𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎 𝟏: 𝐹𝑒𝑑𝑝𝑟𝑜𝑥 𝑓𝑜𝑟 𝑆𝑦𝑠𝑡𝑒𝑚 𝐻𝑒𝑡𝑒𝑟𝑒𝑜𝑔𝑒𝑛𝑖𝑡𝑦 

------------------------------------------------------------------------------------------------------------------------------- 

𝑰𝒏𝒑𝒖𝒕: 𝑆𝑦𝑠𝑡𝑒𝑚 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟, 𝑐ℎ𝑎𝑛𝑛𝑒𝑦 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑎𝑛𝑑 𝑑𝑒𝑣𝑖𝑐𝑒𝑠 

𝑶𝒖𝒕𝒑𝒖𝒕: 𝐹𝑒𝑑𝑃𝑟𝑜𝑥 𝑠𝑜𝑙𝑣𝑒𝑟 (𝑃𝑟𝑜𝑥𝑢𝑝𝑑𝑎𝑡𝑒𝑗
) 

𝒇𝒐𝒓 𝑡 = 0, … 𝑇 − 1 𝑑𝑜 

1: 𝑆𝑒𝑟𝑣𝑒𝑟 𝑠𝑒𝑙𝑒𝑐𝑡𝑠 𝑎 𝑠𝑢𝑏𝑠𝑒𝑡 𝑆𝑡  𝑜𝑓 𝐾 𝑑𝑒𝑣𝑖𝑐𝑒𝑠 𝑎𝑡 𝑟𝑎𝑛𝑑𝑜𝑚 (𝑒𝑎𝑐ℎ 𝑑𝑒𝑣𝑖𝑐𝑒 𝑘 𝑖𝑠 ℎ𝑜𝑠𝑒𝑛 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝𝑘) 

2: 𝑆𝑒𝑟𝑣𝑒𝑟 𝑆𝑒𝑛𝑑𝑠 𝑤𝑡𝑡𝑜 𝑎𝑙𝑙 𝑐ℎ𝑜𝑠𝑒𝑛 𝑑𝑒𝑣𝑖𝑐𝑒𝑠 

3: 𝐸𝑎𝑐ℎ 𝑐ℎ𝑜𝑠𝑒𝑛 𝑑𝑒𝑣𝑖𝑐𝑒 𝑘 ∈ 𝑆𝑡𝑓𝑖𝑛𝑑𝑠 𝑎 𝑤𝑘
𝑡+1 𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝑎 𝛾𝑘

𝑡 − 𝑖𝑛𝑒𝑥𝑎𝑐𝑡 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑟 𝑜𝑓 ∶  𝑤𝑘
𝑡+1  

≈ arg min
𝑤

(𝑤: 𝑤𝑡) = 𝐹𝑘(𝑤) +
𝜇

2
 ‖𝑤 − 𝑤𝑡‖2 

4: 𝐸𝑎𝑐ℎ 𝑑𝑒𝑣𝑖𝑐𝑒 𝑘 ∈ 𝑆𝑡 𝑠𝑒𝑛𝑑𝑠 𝑤𝑘
𝑡+1 𝑏𝑎𝑐𝑘 𝑡𝑜 𝑡ℎ𝑒 𝑠𝑒𝑟𝑣𝑒𝑟  

5: 𝑆𝑒𝑟𝑣𝑒𝑟 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑠 𝑡ℎ𝑒 𝑤′𝑠 𝑎𝑠 𝑤𝑡+1 =
1

𝐾
∑ 𝑤𝑘

𝑡+1

𝑘 ∈𝑆𝑡

 

𝒆𝒏𝒅 𝑓𝑜𝑟 

------------------------------------------------------------------------------------------------------------------------------- 

4.2 FedSplit for Splitting Procedure 

Theoretic View 

To start, we remember the problem's consensus formulation (2) in terms of a block-partitioned vector                    

𝑥 =  (𝑥1, . . . , 𝑥𝑚) Є (𝑅𝑑)
𝑚

, and the function 𝐹 ∶  (𝑅𝑑)
𝑚

 → 𝑅. For issue (2), the feasible subspace is 

denoted as 𝐸 · ·=  {𝑥 |𝑥1  =  𝑥2  = ··· =  𝑥𝑚}, and the function 𝑅 is defined as 𝐹(𝑥) =  ∑ 𝑓𝑗(𝑥𝑗)𝑚
𝑗=1 . To 

solve issue (2) according to the first-order optimality criteria, we need to identify a vector 𝑥 Є (𝑅𝑑)
𝑚

 where 
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𝛻𝐹(𝑥) is either a member of the normal cone of the constraint set E or, alternatively, where 𝛻𝐹(𝑥)  =  2𝐸𝑇 . 

Similarly, if we classify a set-valued operator 𝑁𝐸  as shows in Equation (5). 

𝑁𝐸(𝑥) ≔  {
𝐸𝑇 , 𝑥1 = 𝑥2 = ⋯ = 𝑥𝑚,

∅, 𝑒𝑙𝑠𝑒
 (5) 

Next, it's the same as finding a vector 𝑥 Є (𝑅𝑑)
𝑚

 that works for inclusion. 

0 ∈  𝛻𝐹(𝑥) + 𝑁𝐸(𝑥)  

𝑤ℎ𝑒𝑟𝑒 𝛻𝐹(𝑥) = (𝛻𝐹1(𝑥1) … . , 𝛻𝐹𝑚(𝑥𝑚)) (6)  

When 𝑓𝑗 ∶  𝑅𝑑  →  𝑅 is a convex loss function, then 𝛻𝐹 and 𝑁𝐸  are monotone operators on (𝑅𝑑)
𝑚

 

too (Bauschke & Combettes, 2019). The result is a monotone inclusion issue, as shown in equation (6). 

The optimization and applied mathematics literatures have a rich history of studying methods for 

addressing monotone inclusions (Ryu & Boyd, 2016). Now that we have this framework, we can create 

and evaluate algorithms to address the statistical heterogeneity federated challenges. 

Procedures 

We proceed to detail one approach that is based on splitting into the relation and whose zeroes indeed 

match the distributed problem's global minima. It is a distributed version of the Peaceman Rachford 

splitting algorithm, which is known as the FedSplit algorithm (Peaceman & Rachford, 1955). Algorithm 

2 explore the FedSplit process for minimizing statistical heterogeneity. 

--------------------------------------------------------------------------------------------------------------- 

Algorithm 2: FedSplit for Statistical Heterogeneity 

--------------------------------------------------------------------------------------------------------------- 

𝐼𝑛𝑝𝑢𝑡 ∶ 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑥 ∈ 𝑅𝑑. 𝐹𝑒𝑑𝑃𝑟𝑜𝑥 𝑠𝑜𝑙𝑣𝑒𝑟 𝑃𝑟𝑜𝑥𝑢𝑝𝑑𝑎𝑡𝑒𝑗
: 𝑅𝑑  → 𝑅𝑑 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑥1 = 𝑧1
1  = ⋯ =  𝑧𝑚

1 = 𝑥 

𝒇𝒐𝒓 𝑡 = 1,2, …: 

 1. 𝒇𝒐𝒓 𝑗 = 1, … 𝑚: 

 𝑎. 𝐿𝑜𝑐𝑎𝑙 𝑝𝑟𝑜𝑥 𝑠𝑡𝑒𝑝 ∶ 𝑠𝑒𝑡 𝑧𝑗
(𝑡+1/2)

= 𝑝𝑟𝑜𝑥_𝑢𝑝𝑑𝑎𝑡𝑒𝑗(2𝑥𝑡 − 𝑧𝑗
𝑡) 

 𝑎. 𝐿𝑜𝑐𝑎𝑙 𝑐𝑒𝑛𝑡𝑒𝑟𝑖𝑛𝑔 𝑠𝑡𝑒𝑝 ∶ 𝑠𝑒𝑡 𝑧𝑗
(𝑡+1)

= 𝑧𝑗
𝑡 + 2 (𝑧𝑗

𝑡+1/2
− 𝑥𝑡) 

 𝒆𝒏𝒅 𝒇𝒐𝒓 

 2. 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑔𝑙𝑜𝑏𝑎𝑙 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 ∶ 𝑠𝑒𝑡 𝑥𝑡+1 =  𝑧𝑡+1̅̅ ̅̅ ̅̅  

𝑒𝑛𝑑 𝑓𝑜𝑟 

-------------------------------------------------------------------------------------------------------------- 

A parameter vector 𝑧𝑗
𝑡  Є 𝑅𝑑 is therefore kept for each device j Є [m] by the FedSplit process. The 

parameter estimations at each machine are averaged out by the central server, which keeps a parameter 

vector 𝑥(𝑡) Є 𝑅𝑑. For a proper step size s > 0, the local update at device 𝑗 is defined as the product of 

the following: proximal solver 𝑝𝑟𝑜𝑥_𝑢𝑝𝑑𝑎𝑡𝑒𝑗 (·), which are usually approximate proximal updates 

𝑝𝑟𝑜𝑥_𝑢𝑝𝑑𝑎𝑡𝑒𝑗(𝑥)  ≈  𝑝𝑟𝑜𝑥𝑠𝑓𝑗  (𝑥), distributed uniformly in 𝑥 ∈  𝑅𝑑. When we report our convergence 

findings in next section, we clarify the meaning of this approximation precisely. Compared to existing 

FL algorithm, FedSplit has the right fixed points for the distributed issue, which is an advantage. 
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5 Result and Discussion  

We test FedProx: FedSplit on various workloads, models, and federated datasets from the real world. 

We further assess on a dataset of synthetic data, which allows more exact manipulation of statistical 

heterogeneity and investigate its impact on convergence. We model system heterogeneity by making 

devices do varying degrees of local labour. 

5.1. Dataset Description 

Datasets: Table 1 summarizes the statistics from our study of four real datasets. Both older and more 

contemporary federated learning benchmarks (McMahan et al., 2017; Caldas et al., 2018) are used to 

compile these datasets. Using multinomial logistic regression, we investigate a convex classification 

issue using MNIST. In order to introduce statistical heterogeneity, we split the data across 1,000 devices 

with two-digit samples and a power-law distribution for the number of samples per device. Using the 

same approach, we then examine the FEMNIST dataset, which has 62 classes and is more complex than 

the original. We take into consideration a text sentiment analysis task using an LSTM classifier on 

Sentiment140 tweets in the non-convex context, where each device is represented by a Twitter account. 

We further explore the challenge of next-character prediction using the dataset of William Shakespeare's 

The Complete Works (McMahan et al., 2017). (Shakespeare).  

Baselines: We evaluate proposed hybrid model in comparison to FedAvg (McMahan et al., 2017) 

and other aggregate-then-adapt baselines, such as FedProx (Li et al., 2021), FedBN (Li et al., 2021), 

MOON (Li et al., 2021), FedDyn (Acar et al., 2021), and FedGen (Zhu et al., 2021), all of which are 

state-of-the-art FL algorithms developed to deal with data heterogeneity. In order to prove that our 

suggested proposed for local-global knowledge matching work and collaborative data condensation, we 

research previous work that uses aggregation-free FL, namely FedDM (Xiong et al., 2023).  

Table 1: Sample Dataset Details 

Dataset Devices Samples Samples/device 

Mean Std.Dev 

MNIST 1000 69035 69 106 

Shakespeare 143 517106 3616 6808 

FEMNIST 200 18345 92 159 

5.2. Proposed Model Training 

Client extraction gets unstable when training data is highly Non-IID because of the skewed data. 

Convergence is slow because the global model is unable to quickly retrieve unknown information from 

the local training. The present study takes a shot at speeding up the global model's convergence by using 

the loss function-based client selection technique 𝜋𝑙𝑜𝑠𝑠 to pick clients to train with larger values of the 

loss function. 
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Figure 2: Federated Data from Various Client for Training Phase 

 

Figure 3: Training Loss Value of Various Clients 

Figure 2 shows the data distribution using Non-IID, assuming there are ten clients and a single server. 

A higher selection probability is given to clients with a high loss by the introduction of 𝜋𝑙𝑜𝑠𝑠, which 

helps to avoid the difficulty of global model convergence. By allowing the server to select a larger pool 

of clients with lower prediction abilities and higher loss rates for training, the convergence rate is bound 

to rise. When dealing with Non-IID data in particular, a high loss number can indicate that the client's 

training data is a small subset of the overall data. More clients with high loss values should be selected 

by the server to speed up convergence. The selection probability function and the importance weight of 

customer 𝑣𝑘 are components of the 𝜋𝑙𝑜𝑠𝑠 approach. To start, we establish the significance of clients to 

training by defining the importance weight 𝑣𝑘. When choosing which clients to include in training, the 

server gives more weight to those with larger values of 𝑣𝑘. After that, in order to calculate the clients' 

selection probability, we build a selection probability function. Figure 3 shows the corresponding 

training loss value of the various clients with federated data.  

5.3. Analysis of Statistical Heterogeneity 

Initialization of Hyperparameters. In order to account for statistical heterogeneity in the tests, we 

follow the steps outlined in (Cohen et al., 2017) to create a subset of DomainNet that contains just the 

10 most common classes across all domains. We set up six clients, each with data from a different 
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domain, to simulate real-world situations where data heterogeneity is impacted, for example, by several 

hospitals employing different imaging protocols and equipment. In order to compare the accuracy of the 

final global model across all domains and the average accuracy across all domains, all algorithms are 

executed for 10 communication cycles. When it comes to the image learning rate, both FedProx and 

FedSplit use 1.0.  

Table 2: Performance Comparison of Model Accuracy on Various FL Algorithm  

Methods DomainNet  
S Q P C R I Avg 

Proposed 52.84 68.57 68.57 55.97 67.28 56.84 61.67 

FedAvg 28.46 39.60 59.16 43.03 41.03 40.76 42.01 

FedProx 29.18 38.13 60.22 44.81 41.55 43.76 42.94 

FedGen 25.69 37.33 54.37 42.77 42.86 37.88 40.15 

FedDyn 32.67 37.73 67.46 48.04 41.77 60.03 47.95 

MOON 29.72 48.07 56.26 48.80 42.02 37.97 43.81 

FedDM 46.69 62.37 60.58 52.28 52.45 41.38 52.62 

FedBN 29.72 43.10 52.01 46.07 47.33 34.27 42.08 

Global model accuracy comparison using several FL algorithms on the DomainNet dataset is 

illustrated in Figure 4. "Avg" indicates the average accuracy across domains. The domains are denoted 

by the symbols C (Clipart), P (Painting), I (Infograph), R (Real), Q (Quickdraw), and S (Sketch). The 

boldface and underline in each column represent the best and second-highest accuracies, respectively.  

 

Figure 4: Performance Comparison of Convergence on DomainNet Dataset 

Performance of Convergence and Accuracy: Figure 4 and Table 2 show that when compared to all 

other baseline approaches, hybrid FedProx: FedSplit has the best average accuracy and related 

convergence performance in all domains. In every category, this comparison shows that FedProx: 

FedSplit is far and away the best. In addition, as compared to current models, FedProx: FedSplit shows 

quicker convergence performance and more accuracy. For example, compared to FedDM, which takes 

ten rounds to obtain the same accuracy level, FedProx: FedSplit only takes two rounds, indicating an 

acceleration of 80%. Our collaborative data condensation and local-global knowledge matching 

methodologies validate the usefulness of integrating information from different fields, and these 

advantages underline their benefits. 

5.4. Analysis of System Heterogeneity 

To model the local training dataset for each client, we take into account K = 10 clients and divide the 

training split of each benchmark dataset into numerous data parts. In order to divide up the data among 
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the customers, we use Dirichlet distribution. We take into account three levels of data heterogeneity, 

denoted as α=0.02, α=0.05, and α=0.1, for each benchmark dataset. The controllable parameter α 

determines the degree of heterogeneity. It should be noted that a lower α indicates a greater level of non-

Independent and Identically Distributed (IID) in the data distribution across customers. In order to 

resemble challenging situations of data heterogeneity that may be faced in practical applications, we 

have selected these α values.  

We use a local learning rate of 0.01 and a local batch size of 64 for 10 local epochs in our aggregate-

then-adapt baseline approaches. To condense local data for FedProx: FedSplit, we use a batch size of 

256, 1000 local update steps, and 50 images per class (IPC). To train the global model, we use 500 

epochs, a batch size of 256, and a learning rate of 0.001. For each kind of data, we use the mean of the 

original, locally-sampled data as an initialization. The data learning rate for FedProx is configured as 

0.2 for FMNIST, 1.0 for MINIST, and 0.1 for Shakespeare. To make sure FedSplit is stable during local 

data condensation, we use a data learning rate of 1.0 and clip the norm of gradients at 2.0. With ρ=5, we 

have set the global model re-sampling coefficient γ at 0.9.  

Model Accuracy 

We begin by comparing the algorithms' top global model accuracy within 20 communication cycles. 

With respect to mean accuracy and variance, FedProx: FedSplit considerably surpasses all aggregate-

then adapt baselines in a number of contexts, as shown in Table 3 and Figure 5, Figure 6 and Figure 7 

for various dataset. The results show that on MINIST, Shakespeare, and FMNIST, respectively, 

FedProx: FedSplit improves performance by up to 25.44%, 17.91%, and 31.03% when compared to 

FedAvg. On the same datasets, FedProx: FedSplit still has a lead of up to 19.43%, 13.70%, and 17.74% 

compared to FedDyn, the top aggregate-then-adapt baseline. Also, on MNIST, Shakespeare, and 

FMNIST, respectively, FedAF achieves an accuracy advantage of 4.87%, 4.56%, and 2.17% over 

FedDM. Our collaborative data condensation and local global knowledge matching techniques are 

shown to be successful by FedAF's more noticeable performance with higher data heterogeneity, such 

as at α = 0.02. 

Table 3: Performance Comparison of Model Accuracy on FMINIST, MINIST and Shakespeare 

Dataset 

Methods FMNIST MNIST Shakespear

e 

FMNIST MNIST Shakespear

e 

FMNIST MNIST Shakespear

e 

α =0.02 α =0.05 α =0.1 

FedAvg 56.50±5.5

5 

39.71±1.1

5 

30.80±2.20 69.14±5.8

4 

46.51±3.0

7 

33.37±0.75 82.19±5.67 56.15±4.6

2 

39.97±1.53 

FedProx 60.38±5.0

0 

36.46±5.3

9 

30.82±0.80 69.33±4.1

2 

45.83±2.2

3 

36.61±1.44 81.56±4:52 58.54 

±1.87 

40.45±1.53 

FedGen 61.44±2.0

7 

36.61±1.0

6 

29.20±2.09 75.48±1.8

3 

42.72±2.1

1 

33.56±3.91 82.29±2.53 58.17±2.8

4 

40.23±1.06 

FedDM 85.36±0.9

6 

60.28 ± 

0.82 

44.15±0.30 86.08±0.6

8 

62.97±0.9

6 

46.27±0.98 86.65±0.31 64.88±0.3

5 

47.05±0.13 

FedDyn 69.79±5.0

4 

45.73 

±3.98 

35.01±2.07 75.19±5.4

9 

57.68 

±1.84 

39.10±0.34 84.73±2.7.7

4 

59.97±2.2

0 

41.81±1.46 

MOON 51.33±7.0

0 

33.32±1.1

3 

33.41±0.70 71.41±4.0

8 

47.41±4.5

9 

37.90±0.80 81.61±2.68 57.62+4.9

9 

40.24±0.68 

FedBN 58.26±4.2

8 

36.53±2.5

2 

29.73±1.73 72.91±4.6

9 

45.13. ± 

22.18 

33.73±2.15 77.33±3.07 57.67+3.2

1 

39.84±0.20 

Propose

d Model 

91.28 

±0.22 

72.58±0.7

3 

59.16±0.21 93.85±0.1

8 

71.83 ± 

0.54 

53.86±0.22 92.68 ±0.31 72.58±0.5

6 

65.27±0.13 
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Convergence Performance. In addition, we look at how fast FedProx: FedSplit converges compared 

to baselines; Figure 5, Figure 6 and Figure 7 shows the learning curves from three benchmark data sets 

of MNIST, Shakespeare and FEMNIST respectively. This shows that FedProx: FedSplit consistently 

outperforms other baseline methods when it comes to convergence speed, especially when dealing with 

highly heterogeneous data. As an example, FedProx: FedSplit outperforms other aggregate-then-adapt 

baselines in terms of accuracy in just two rounds when α = 0.02. On MINIST with α = 0.02, FedProx: 

FedSplit likewise maintains an advantage over FedDM. In contrast, FedDM takes fifteen rounds to 

obtain a mean accuracy of 62%, whereas FedProx: FedSplit only takes three rounds, indicating a speed 

improvement of 82% in convergence. 

   

Figure 5: Performance Comparison of Convergence on MINIST Dataset 

   

Figure 6: Performance Comparison of Convergence on Shakespeare Dataset 

   

Figure 7: Performance Comparison of Convergence on FMINIST Dataset 

Analysis on Core Design 

Core design's effect on learning MNIST's global model accuracy at three distinct heterogeneity levels 

(Table 4). This federated learning paradigm addresses heterogeneity difficulties via the use of two 
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essential techniques: FedProx and FedSplit. In order to better understand how these two methods 

enhance performance, we carry out more tests on MNIST dataset. In particular, we evaluate the whole 

FedProx:FedSplit in comparison to two alternative setups that do not use any of the basic techniques. 

Additionally, we contrast it with FedDM, which does not use any of these methods. In comparison to 

results obtained using FedDM, the mean accuracy that may be achieved by utilizing a single basic 

approach alone still exhibits significant improvements (Table 4). Additionally, the mean accuracy is 

much better with the complete FedProx:FedSplit. These findings prove that FedProx:FedSplit can 

improve overall learning performance by encouraging the use of supplementary knowledge derived from 

information circulated across consumers.  

Table 4: Analysis of Core Design on MNIST Dataset 

Configuration α=0.02 α=0.05 α=0.1 

FedProx:FedSplit 68.98±0.54 69.54±0.41 70.48±0.38 

FedProx 67.42±0.82 68.11±0.76 69.34±0.53 

FedSplit 65.28±0.74 66.97±0.62 67.95±0.44 

FedDM 60.28 ± 0.82 62.97 ±0.96 64.88±0.35 

6 Conclusion 

The practical issue of statistical and system heterogeneity in medical industry has been discovered in 

this study. The issue of diverse labels and heterogeneous of medical data has been addressed by 

introducing this proposed hybrid model. A hybrid FedProx: FedSplit was used to handle the statistical 

and systemic heterogeneity of medical data in federated networks, which is essential for dealing with 

the diverse patient data in FL. With the use of a proximal term, FedSplit can stabilize its process and 

distribute work among devices in varying quantities. In actual federated contexts, we provide the 

convergence guarantees for FedProx: FedSplit under the assumption of device dissimilarity. We have 

shown that the FedProx: FedSplit framework may greatly enhance the convergence behavior of federated 

learning in actual heterogeneous networks via our empirical assessment across a suite of federated 

datasets, which validates our research. 
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