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Abstract

With the tremendous growth in the use of information technology, the connected health networks
are becoming more relevant, greatly improving the traditional standard of healthcare procedures
from data acquisition, storage, and sharing among the medics for timely clinical diagnosis processes,
therapy, and disease management. However, connected health network comes with network and
cyber criminality challenges, and frequent security breach attacks on digital platforms and databases.
Unfortunately, Sensitive clinical information is greatly at risk with adversaries, most clinical
stakeholders find it difficult to overlook free access to the clinical records. Previously, feature
aggregation networks, convolutional neural networks, residual convolutional neural networks, and
machine learning models were used in different methodological approaches towards ensuring the
detection of hidden information in images, unfortunately, none was able to produce optimal results.
This study proposes a three-phased framework to determine the suitability of embedder networks’
feature extraction for image steganalysis, predicting and detecting hidden information in images. A
Multilayer Perceptron (MLP) deep learning model was trained for pattern recognition of
steganography instances in acquired digital image signals. The digital image signals used for the
predictive steganalysis are publicly available images contained in two circumstances highlighted
regarding clean image signals (situation of cover images, but without steganography) and the
embedded situation of image signals (where images (stego) with hidden data or information).
Interestingly, the results of the parameter show that the Max-iter parameter of the MLP classifier
hugely determines the performance of the algorithm towards detecting steganography in digital
image signals. The parameter stipulates the number of times the training set will pass through the
MLP network for the training process. Significantly, in our experiment, Max-iter returned the best
result at 1000 netting an accuracy of 93%, precision of 57%, and recall of 100% weighted averages.
Our study does not only implement a model that detects hidden information in images, but it also
discovered and tuned the multilayer perceptron to determine where it will perform best.
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1 Introduction

The data and information stored in a database may be greatly impacted by human error. Human errors
are frequently the most difficult challenges in data and information security. Uninformed or ignorant
workers may perhaps into the use of weak passwords, may erase data mistakenly, even be a victim of
phishing schemes, have privileged account access and visit unsuitable websites. Companies need to put
together a group of security specialists to conduct awareness or training campaigns, which will empower
staff members and lower the possibility of data and information theft. The usage of data loss solutions
can also help prevent end users from leaking sensitive data either purposefully or by mistake. These
listed challenges observed in the usage of conventional data security measures has thus made it necessary
to seek a more improved and better alternative to the security of data and information (Mathew & Asha,
2024; Mohandas et al., 2024). This improved alternative is the introduction of data and information
hiding technique known as steganography (Krishnan et al., 2022). Following the kind of cover object
being used, Steganography may be categorized into textual, imagery, audio, video and protocol
steganography. Steganography aims to securely hide messages (information) so as to complicate
situation for attacker. The application of a steganography and a dual layer encryption provides a more
secure approach for information transmission in a cloud computing environment.

Image data that is frequently exchanging hands on the internet need to be subjected to forensics to
detect the possibility of malicious messages in what is referred to as image steganalysis (Odeh & Taleb,
2023). Steganography is used to securely hide messages (information) such that the attacker does not
detect the presence of any message in the cover object being used (Wan & Hu, 2024). This study
investigates the extent to which parameter optimization would improve steganalysis performance using
predictive analytics and the extent to which deep ensemble learning would influence steganalysis
performance metrics using predictive analytics. More efforts were to investigate image embedding
networks' expertise in detecting steganography in digital images. More efforts would also be on
establishing embedder networks’ feature extraction’s stability for image steganalysis, which deviates
significantly from the literature trend. This study employs a three-phased framework that aids digital
forensics by predicting blind steganalysis. This study employs Multilayer Perception Deep Learning
(MLP), a machine learning model to execute image steganalysis for digital forensics using feature
engineering techniques, including parameter optimization and feature selection. The public datasets
employed in the study were trained with deep learning algorithms in an ensemble methodological
approach. The model was then tested and evaluated to ascertain its performance through benchmarking
with existing state-of-the-art.

Detecting and Predicting Hidden Information in Data

Several studies attempted to create an application to detect steganography. Zou and the team in 2019
filed gaps in the literature concerning feature expression (Zou et al., 2019). They proposed a new
steganalysis paradigm in which feature learning is viewed as a critical impetus for ensuring an effective
steganography detector. The purpose of the submission was to innovate the steganalysis paradigm
concerning the functionality of in-depth learning. The study presented a model that was planned and
tuned to the characteristics of steganalysis. This was thought to make the model more effective at
detecting statistical features like neighborhood correlation.

According to (Yedroudj et al., 2018), a CNN fortified with error probability in continuation of an
existing study focusing on state-of-the-art techniques is more resourceful. The study employed five
convolutional layers, including a Batch Normalization connected with a Scale Layer, as well as the use
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of appropriately sized fully linked sections. The study used an amplified database to improve
convolutional neural network training. The model was evaluated with S-UNIWARD and Wavelet
Obtained Weights (WOW) embedding algorithms while subjecting its performance metrics to three
methods including an ensemble classifier and two other steganalyzers. No parameter optimization is
employed on the neural network is a weakness of the study.

Furthermore, Qian et al., (2018) provided a review of the steganalysis concept of feature learning
using convolutional neural networks, concentrated on traditional steganalysis with handcrafted features.
To enable the convolutional network on image inputs, a cropping strategy was also used. Unfortunately,
no parameter optimization is employed on the neural network.

Jang et al., (2020) proposed a feature aggregation-based steganalysis network, including the use of a
fixed preprocessing filter with the disadvantage of using a limited number of extracted features from the
input images. As a result, the study increased the channels number in the blocks of convolutional that
are close to the input data. It also aggregated feature maps of various levels and resolutions by utilizing
rich information to improve the steganalysis model's performance. The study used the capped activation
function to obtain better oversimplification performance on the JPEG quality factor 75 and 95 as the
training set.

In 2019, Saito et al., (2019) investigated the likelihood of recognizing the locations of embedded data
through steganography if the given image is allegedly suspected to be a stego image, to reaffirm the
decision of the first level steganalysis and determine the magnitude of the embedded data. The study
employed ‘F5” as the steganography approach, utilizing 50% of the concealable information from the
dataset to create a stego. For the study, three hundred and seventy images were chosen at random from
the HDR Burst dataset. Each of the 370 images was arranged into sub-groups that were made up of 64
x 64 pixels, totaling 94,720 training and test sets altogether fitted on a multilayer perceptron. The
strength of the study was the novelty of predicting the location of stego using a heat map and deployment
of deep learning MLP algorithm. However, having weaknesses of non-implementation of the bias-
variance tradeoff in the model and no parameter optimization employed on the neural network. Also,
the study of Zhang and the team in 2018 attempted to solve existing gaps in steganalysis including
working closely on the ratio of noise in the signal and as well as trying to steganalyze images of random
dimensions (Zhang et al., 2018). This became expedient because some algorithms seek fixed size images
as input with low precision output due to the underutilization of noise figments occasioned by feature
extraction. The study therefore designed an enhanced convolutional network structure tailored towards
CNN to solve the aforementioned gaps. The study used a 3 by 3 kernel in place of the traditional 5 by 5
and likewise optimized convolution kernels in the preprocessing layer. The study used smaller
convolution kernels to decrease parameter numbers while modeling the features in small local regions.
Spatial pyramid pooling (SPP) was implemented in the study to combine local features which enhances
the demonstrative aptitude of the features. Similarly, data augmentation was employed in the study to
further improve network performance with the use of feature learning as a means of feature engineering.
Unfortunately, no parameter optimization employed on the neural network was a weakness.

The study of (Ye et al., 2017) presents an approach using a convolutional neural network representing
an alternative approach to the concept of steganalysis relative to digital images. The approach was
considered simple and resourceful in a unified framework. Moreover, the approach can learn hierarchical
illustrations directly from raw images. Instead of using a random approach, weights in the first layer of
the CNN were modified with the high-pass filter set used for residual map calculation in a spatial rich
model. The model was strengthened by the use of a truncated linear unit and deep machine learning. The
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model's neural network has no parameter optimization and has the weaknesses of an ensemble of deep
learners.

The study of Zeng and the team in 2020 investigated a halftone image steganalysis as well as the
influence of a Gaussian filter on image steganalysis (Zeng et al., 2020). A novel residual convolutional
neural network with stego-signal diffusion was used. To diffuse the stego-signal with its neighboring
pixels, the image was preprocessed with the inverse halftonic. As a result, the disparity between the
cover and stego image was amplified on the textual, and the residual block was used to build the neural
network model. This is thought to preserve the stego-signal better than a conventional network. Precision
in the detection is improved by the magnified difference and deep learning enhances the performance of
the model. Park & Cho, (2020) provided an overview of a steganography of automated image related
detection system for the Kakao Talk Instant messenger. The study developed automated framework for
detection of steganographic images in digital forensics, and gathered and examined image files from
Social Network Service (SNS) chat rooms, which were open image steganography tools. The proposed
framework was implemented on two Stegano and Cryptosteganography tools based on the KakaoTalk
SNS messenger in the study. No parameter optimization is employed on the neural network, however,
deep learning is expected to return a better result.

Cyber Security Issues in Connected Health Networks

Healthcare has been benefiting immensely from Connected Network paradigms being a viable
alternative approach to the traditional concept of the healthcare system, although with sacrificing
computational cost and a greater potential of breach of privacy (Veera Boopathy et al., 2024).
Consequently, researchers’ attention has been on looking into the best approaches to ensuring Connected
Health Network is conveniently and affordably available to medics in facilitating reliable connectivity
between hospitals and physicians thereby improving clinical collaborations. One of the outstanding
contributions to resolving the challenges in Connected Health Network is the submission of (Adeshina
& Hashim, 2017). The study proposed a secured framework that was evaluated as resourceful for
connected health networks. The framework was outstanding in its performance when experimented with,
for the diagnosis of radiological datasets. Experiments confirmed the framework fast-processing with
ordinary regular hardware and software ensuring greatly lower computational cost. Though it was a
notable contribution, the approach missed out on the beauty of artificial intelligence concepts thereby
limiting its future usefulness.

For the fact that the concepts used in the development of connected health networks subsequently
determine the possible approach for tackling observed challenges, Boudouaia et al., (2020) proposed a
unidirectional hash function (cryptographic tools) for the rank-related attack which was considered one
of the most challenging cyber-attack related to the routing protocol for Low Power Network (RPL).
Similarly, to strengthen the network, multilayer detection for selective forwarding was proposed for the
detection of network layers including the MAC pool IDs layer, rule-based layer, and anomaly detection
layer (Alajmi & Elleithy, 2016). Mehetre et al., (2019) likewise presented a two-stage security solution
for selective forwarding attacks and block hole attacks on connected networks using data packets in
different distribution routes and Elliptic Curve Cryptography (ECC). A sinkhole attack was detected
using a proposal approach from (Esiefarienrhe et al., 2022), a cross-layer design solution following the
understanding fact that in order to ensure efficient transmission of packets in connected networks both
the security and the Quality of Services (QoS) improvement are required. The study ensured the
protection of the network from Sinkhole attacks while also improving the jitter, delay, and network
throughput. The study (Chung & Park, 2019) a submission, submitted the existence of healthcare
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networks in broadband communication infrastructure, and proposed a better approach to paying attention
to QoS such as response time and delay.

Fingerprint mechanism-like were used (Sanchez et al., 2021) to possibly defend circumstances of
value assignment in order to identify those entities requiring data in connected health networks.
Cybertext-Policy ABE (CPABE) (Alshehri et al., 2012), Homomorphic Encryption in its full form, and
machine learning which was based on clustering techniques were proposed in (Alabdulatif et al., 2019),
CP weighted ABE was proposed, and used to secure data security with weighted attributes (Li et al.,
2021) among other research works previously proposed in an attempt to tackle the security issues in
connected health network. Unfortunately, despite all efforts so far, according to (Singh & Chatterjee,
2023) the following research problems remain significant challenges:

1. The lack of uniformity among connected devices reduces the accuracy of data.
2. Massive data being transferred and stored can be hacked and misused.

3. The cost in terms of communicational and computational costs is very high for constrained
devices.

4. High latency and response time degrade the QoS parameter in the cloud-based healthcare system.

With this study, we have therefore proposed and implemented a three-phased framework to aid digital
forensics through predictive of blind steganalysis, targeted at resolving those significant challenges in
connected health networks.

2 Material and Methods

A three-phased framework was implemented for this study to aid digital forensics through the prediction
of blind steganalysis. The digital image acquisition, the Feature Extraction phase, and the concluding
phase, the Steganalysis Predictive Analytics with MLP.

Phase 1: Digital Image Acquisition

This study employs public image signals from two circumstances, clean image signals (situation of cover
images but without steganography) and the embedded situation of image signals (where images (stego)
with hidden data or information acquired for forensics (Corum et al., 2020). The public set contains 4319
cover images and 4013 of stego tagged images formatted with JPG-embedded extensions, all amounting
to 8332 input signals in total, for the study. The entire 8332 public sets were used in the analysis for
mining of numeric image descriptors for mining of numeric image descriptors (numeric vectors), which
were then concatenated to form the labeled training set for this study's supervised learning model. In
figure 1 shows the proposed framework.
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Figure 1: The Proposed Framework

Phase I1: Feature Extraction

Numerical image descriptors are extracted using image embedding networks in this conceptual
framework. Using image embedding to extract features entails feeding the cover and stego image signals
into deep learning models that have already been trained to obtain vector representations of the actual
inputs, which serve as the images' numeric descriptions. Transfer of learning is used to carry out the
extraction procedure on a local server or on a dedicated digital server. After successfully extracting
numeric descriptors out of the cover and stego digital images, then, numeric vectors from both versions
are encapsulated and labeled as positive (stego) or negative (cover). Each deep embedder is described
in detail below:

SqueezeNet: In this case, with the deep neural network vector attributes were returned on marked
image instance using the deep neural network SqueezeNet 1000-no numeric, representing
negative as well as positive staganography instances. SqueezeNet, when compared to other deep
embedders, is fast. For image recognition, it is also a small embedder having fewer computational
challenges. Following the pre-training of the model on imageNet, archiving AlexNet-level
accuracy with 50X fewer parameters, swapping 3 x 3 filters for 1 x1 filters was accomplished.
The remaining 3 x 3 filters, as well as the network’s late down sampling, achieve input reduction.

InceptionV3: The batch normalization layers, factoring convolutions with larger spatial filters
are integrated in the architecture, which resulted in tremendous computational efficiency. The
module inception is the core and significant building block of the kernel, aligned with various
dimensions of 1x1 and 3x3. Targeted 2048 feature vectors of were extracted from each of the
marked input image by the network.

Visual Geometry Group (VGG) (16 and 19): Convolutional layers and the activation function
rectified linear unit (ReLU) are used by the VGG16 and VGG19 embedder families. The VGG-
16 and VGG-19 embedders each have 16 and 19 layers, with a filter dimension of 3x3. The 16
and 19 variations in this study were considered due to their simplicity, moreover, they are widely
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used in other studies, including. Separately, 4096 feature vectors were extracted from each signal
input by the embedders.

iv.  Painters: To predict painters, a deep convolutional network embedder referred to as Painter,
was trained on artwork images since it has the ability to recognize patterns in artistic image
signals greatly useful in describing X-ray and CT scan inputs. The activation of the network's
penultimate layer is used for embedding. The deep embedder extracted 2048 feature attributes.

Phase I11: Steganalysis Predictive Analytics with MLP

The framework's final phase implements the steganalysis predictive analytics. A binary classification
approach employs the supervised machine learning concept, which includes cover numeric image
descriptors labeled as negative, and stego numeric image descriptors labeled as

Embedder_attributes:8332

Training folds

Test fold
A
- I
1% jteration E, .\
2" jteration [ E,
> E=1/1032=1 E;
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10t jteration E,
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Figure 2: The Concept of Cross-validation (10-fold)

Positive. For machine learning, the deep learner algorithm Multilayer Perceptron (MLP) was used.
For the simulation, the supervised machine learning approach was used, in which the MLP was first
trained. The training used a significant proportion of extracted numeric image descriptors as the training
dataset for pattern recognition, after which the remaining datasets were used to predict if there was the
presence of a secret message in the digital images or not. For the simulation, the 10-fold cross-validation
methodology was used. The dataset was randomly divided into ten equivalent sub-samples, one of which
serves as the validation set for testing the model. The MLP was treated in the same manner, and the
validation procedure was repeated every ten clocks. The average of the results of the ten-fold was then
recoded to have a unique learner’s algorithms singly estimated. This method ensures the usage of the
feature vectors that was extracted for each of the 8332 image instances, the 8332, The methodology of
cross-validation (10-fold) is presented in Figure 2. The parameters for training the MLP are shown in
Table 1.
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Table 1: Parameter Distribution Choices for Training the MLP

Hidden layer numbers 1000
Learning rate 0.001
Alpha 0.0001
Batch size 200
Batch size 1
Solver 1bfgs (Backpropagation)

The framework was implemented with object-oriented Python programming libraries and on the
Orange data mining toolkit. The Orange data mining toolkit was used for feature extraction purposes
where the SqueezeNet embedder was employed to extract numeric feature vectors, through image
embedding, as presented in Figure 5. The feature selection of image attributes was also executed on the
Orange framework. The steganalysis through machine learning was then implemented on the Jupyter
notebook of the Anaconda Navigator environment presented in Figure 6, where the Python code was
programmed and run to execute the framework. The Sklearn Python library was employed for the
machine learning and binary classification problem of this study. During the evaluation stage, the
SKlearn library was also used. The Numpy library was used for handling the multi-dimensional array
and matrices due to the image embedding which requires mathematical functions for smooth operations
on the arrays. Data analysis that comprises transformation, cleaning, and visualizing data points were all
achieved with the Pandas library, while Scikit-learn (Sklearn) is the most useful and robust statistical
machine-learning modeling tool for clustering and classification. The resulting model is then assessed
using the confusion matrix generated during the machine learning phase. To determine the best
parameter setting for the Multilayer perceptron in the steganalysis experiment, the performance metrics
across the different parameter tuning were evaluated.

3 Result and Discussion

The acquired digital image signals with no hidden or embedded secret messages are presented in the
image grid view of Figure 3, while the stego instances, with embedded secret images, are presented in
the Figure 4 grid view. The addition of the two categories for the implementation of the framework is
presented in the image grid view of Figure 5. The concatenated image signals in Figure 5 were subjected
to feature extraction through deep learning image embedding. The numeric feature vectors extracted
from each of the image signal instances are presented on the data table of Figure 6, and serves as the
training set of the study for each of the five image embedders. There is a need to identify the most
significant attributes in the numeric feature vectors, as determined by the Information Gain and the
Chi-Square techniques, whose result is presented in the Figure 7 ranker. Additional image signals were
subjected to feature extraction processes to serve as the test set of the study and the resulting numeric
feature vectors, presented in Figure 8. The training of the MLP classifier with the training set produces
a software solution that was tested by the test set of Figure 8 using the 10 fold-cross validation as earlier
described. The result of the testing was the prediction made by the MLP after a successful training. The
image signal instances contained in the test set were predicted as either a stegno image signal or cover
image signal and the result of the prediction was automatically saved in a comma-separated version
(CSV) file, whose result is presented in Figure 9.
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Figure 3: Screenshot of Acquired Cover Images
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Figure 9: Result of MLP Predictions on the Test Set

Performance Evaluation of Parameter Tuning

The performance evaluation of the Multilayer Perceptron was determined by the iteration of the testing
phase of the framework through parameter tuning. ldentified parameters of the MLP were tuned
repeatedly to identify the optimal performing attribute set. Using the True Positive (TP), True Negative
(TN), False Positive (FP) and False Negative (FN) results of each parameter tuning, the performance
metrics of Accuracy, Precision, and Recall were computed. The Accuracy, precision, and Recall

attributes were calculated based on the four metrics as computed below:

The Accuracy parameter returns the model's overall precision, which reveals the percentage of
positive cases overall that the MLP accurately predicted as either stego or cover.

Precision, however, establishes the percentage of steganography status that establishes the stego
or cover state of each image input.

The Recall is the proportion of stego or cover instances that are expected to be stego or cover.
They are computed by the formula in equations 1, 2, and 3 as follows:

TP+TN

Accuracy = —————— @
TP+TN+FP+FN

. TP

Precision = 2

TP+FP
TP
Recall = 3)
TP+FN

Parameter Optimization Evaluation

Parameter optimization was implemented on the Multilayer Perceptron to ascertain the best parameter
set for the steganalysis of acquired image signals. Therefore, parameter tuning is implemented on the
Max-iter parameter of the MLP, which is the maximum number of hops the perceptron is allowed to
find the minimum error value. It is at the minimum error value that the MLP returns its best prediction.
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Therefore, the value specified as the max-iter will determine the number of epochs, which is the
maximum number of times the entire dataset goes through the network. It is referred to as the batch size
in Table 1 and hence, the default setting was at 200.

The parameter was then tuned from 200 to 300, 500, and 1000, therefore returning the confusion
matrices presented in Figure 10, Figure 11, and Figure 12. The weighted averages of the Accuracy,
Precision, and Recall, computed based on the confusion matrices are presented in Table 2, Table 3, and
Table 4 respectively. The confusion matrix for the Max-iter at 500 and random rate at 5 is presented in
Figure 13. As observed, the optimal performance was achieved at the Ma-iter 1000 of Table 4.
Consequently, the parameter random rate set at default 1 for the earlier iterations was tuned to 5 on the
optimal max-iter 1000, and the resulting weighted averages are presented in Table 4. The pair of
Max-iter at 1000 and the random rate at 5 is observed to have lowered the performance metrics compared
to the optimal result earlier presented in Table 6. Therefore, the optimal parameter set for the MLP, for
the detection of steganography is presented in Table 4. Weighted average distribution with random rate

at 5 is presented in Table 5.
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Figure 11: Confusion Matrix for Max-iter at 500
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Figure 13: Confusion Matrix for Max-iter at 500 and Random Rate at 5
Table 2: Weighted Average Distribution of Max-iter at 300

Metrics | Weighted averages

Accuracy 0.973
Precision 0
Recall 0

Table 3: Weighted Average Distribution of Max-iter at 500

Metrics | Weighted averages

Accuracy 0.128
Precision 1.000
Recall 0.170
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Table 4: Weighted Average Distribution of Max-iter at 1000

Metrics | Weighted averages

Accuracy 0.931
Precision 0.5714
Recall 1.000

Table 5: Weighted Average Distribution with Random Rate at 5

Metrics | Weighted averages

Accuracy 0.863
Precision 0.2857
Recall 0.666

Table 6: Weighted Average Distribution at Max-iter 1000 and Random Rate at 5

Metrics | Weighted averages (Random at 5) | Weighted averages (Random at 1)
Accuracy 0.863 0.931
Precision 0.2857 0.5714

Recall 0.666 1.000

The experimental results of the study interpret the framework earlier presented to address the
objectives set for this study. Results of the parameter optimization show that the Max-iter parameter of
the MLP classifier hugely determines the performance of the algorithm toward detecting steganography
in digital image signals. The parameter stipulates the number of times the training set will pass through
the MLP network for the training process. Model performance was observed increased over time with
the iteration. As observed in Table 2 when the parameter is set at 300, the accuracy weighted average
was 97% with a bad precision and recall weighted averages. The Accuracy dropped to 13% in Table 3,
with the Max-iter at 500, however, the weighted averages of precision and recall improved to 100% and
17% respectively. Max-iter returned the best result at 1000 netting an accuracy of 93%, precision of 57,
and recall of 100% weighted averages, as indicated in Table 4. With the optimal result achieved at 1000
max-iter, the random rate parameter is further tuned from 1 to 5 but the performance of the MLP deep
classifier dropped as presented in Table 6 with 86% accuracy rate, 29% precision rate, and 67% recall
weighted average. In all, the most prominent feature attributes, out of the total extracted from the image
signals are presented in Figure 7. The highly rated features are the most significant in the approximation
of the ground truth as to the status of an image signal as either a stego or cover images.

Undoubtedly, our experiments have proven the proposed methodology quite outstanding for
detecting and predicting hidden information in data using the Multilayer Perception deep learning model
except for the general concern that MLP uses one perceptron for each input, for instance, pixel in an
image, leading to a situation where the amount of weights rapidly increases for large images thereby
resulting in dealing with complexity and computational costs as it usually requires more parameters,
more data and more time to converge. This could become a greater challenge in real-life situations when
MLP classifiers are exclusively depended on for steganalysis.

4 Conclusion and Future Work

Using a three-phased framework, A deep learning model of Multilayer perceptron is trained for pattern
recognition of steganography instances in acquired digital image signals. The image signals are acquired
from the Kaggle public repository containing cover images (clean signals) and stego images (embedded
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signals). The SqueezeNet network, from the acquired signals for the machine learning phase, was
employed to extract numeric feature vectors. Prior to the training of the multilayer perceptron, the
numeric feature vectors are subjected to a minority oversampling in order to scale up the instances of
minority class of stego or cover instances contained in the training set. The parameters of the Multilayer
perceptron was tuned severally to obtain the optimal parameter set determined by the accuracy,
precision, and recall weighted averages. The max-iter parameter returned optimal performance at 1000,
after initial iterations at 500 and 300. A Multilayer Perceptron would be able to predict a stego image if
one of its parameters (random rate) was set to a specific value, and it would perform even better if the
max-iter was set to a specific value. Unlike one of the best previously proposed methodologies which
were based on deep learning residual and convolution neural networks, having recorded weaknesses of
parameter optimization on the neural network, non-implementation of feature engineering technique,
and even no attempt to address variance problems, our study does not only implement a model that
detects hidden information in images, but it also discovered and tuned the Multilayer Perceptron to
determine where it will perform best which are considered greater contributions over all the related
previously proposed methodologies.

Future work is intended to critically study and propose relative solutions to the observed complexity
and computational costs that are usually associated with Multilayer Perceptron, especially in
steganalysis where the amount of weights rapidly increases for large images when using MLP classifiers.
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