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Abstract 

The double-surgeon cockpit is an innovation in telesurgery that allows two surgeons to collaborate 

by remotely controlling a robot to perform surgical operations. However, it also introduces new 

challenges in synchronization and Role-Based Access Control (RBAC) due to the need for precise 

coordination and secure operation. In this paper, we address these challenges and propose an 

optimized synchronization strategy and implement RBAC within double-surgeon cockpits. The 

synchronization strategy combines passive latency monitoring and active command throttling to 

ensure coordinated actions from multiple surgeon consoles. Meanwhile, RBAC ensures that we 

assign specific permissions to each surgeon based on their roles, restricting access to only necessary 

robotic components, and preventing unauthorized actions. This dual approach aims to improve the 

operational efficiency, security, and overall success of telesurgical operations. The simulation 

results demonstrate the effectiveness of the proposed synchronization strategy, while a detailed 

RBAC framework ensures secure and efficient role management in telesurgery. 

Keywords: Telesurgery, Double-Surgeon Cockpit, Latency, Synchronization, Role-Based Access 

Control. 

1 Introduction 

Telesurgery enables physicians to remotely control surgical robots across long distances to conduct 

surgery (Regina Chandra & Jayabal, 2019). This enables individuals in rural areas to obtain essential 

medical care (Özsoy & Alcan, 2017). Telesurgery has been realized since at least 2001, when Marescaux 

et al. conducted the first recorded telesurgery procedure. Telesurgery with robot-controlled surgical 

equipment improves the precision and accuracy of surgical interventions (Chatterjee et al., 2024). A 

recent advancement in telesurgery known as the "double-surgeon cockpit" (Oki et al., 2023) facilitates 

real-time collaboration between two surgeons from potentially distant locations. This approach 

combines the expertise of multiple surgeons to achieve better surgical outcomes (Sabah & Kaya, 2023). 

Latency is a well-known problem in classical single-operator telesurgery procedures. We need the 

actions sent from the surgeon console to be delivered to the robot with minimal delay for the best surgical 

experience (Xu et al., 2014). The integration of multi-operator systems introduces new challenges in the 

area of synchronization and Role-Based Access Control (RBAC) (Craß et al., 2013; Boukerche et al., 
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2007; Pedersen, 2017). These challenges affect the safety, efficiency, and security of telesurgical 

procedures. The surgeons' consoles might have varying latencies, which introduces the need to ensure 

that commands sent from them to the robot are synchronized with each other to avoid accidents (Rayman 

et al., 2005; Rogers et al., 2017). In addition, we need to ensure that each surgeon has permission to 

access only the robotic component that they need for the surgical procedure (Mori et al., 2024). 

This research aims to tackle these problems by concentrating on the optimization of synchronization 

in double-surgeon telesurgery cockpits. We investigate how to utilize adaptive synchronization and 

RBAC to improve the safety, efficiency, and security of multi-operator telesurgical systems. By doing 

so, we advance the overarching objective of enhancing telesurgery, rendering it a more feasible 

instrument for contemporary medicine. 

Although prior studies have explored certain facets of single-operator telesurgery, limited research 

has comprehensively investigated the multi-operator dimension presented by the double-surgeon 

cockpit. In single-surgeon situations, synchronization generally employs buffering or latency offset 

techniques that fail to include concurrent control by numerous specialists. By contrast, our approach 

specifically tackles real-time concurrency and surgical collaboration when two surgeons concurrently 

send commands to the same robotic platform. This necessitates new mechanisms for conflict resolution, 

prioritization of commands, and split-second adjustments to accommodate varying latencies across 

different surgeon consoles. 

Moreover, we extend beyond standard RBAC implementations often used in static enterprise systems 

by integrating dynamic, real-time permission checks tailored for critical telesurgery conditions (He et 

al., 2014). Traditional RBAC frameworks are not designed for the high-stakes environment of 

telesurgery, where immediate overrides and rapid changes in roles (for instance, from an assistant to a 

lead, or vice versa) may be required during emergencies. Our proposed RBAC configuration is thus 

novel in that it anticipates and responds to the concurrent input of two surgeons, granting or revoking 

access to specific robotic subsystems based on evolving surgical demands (Lee et al., 2022). 

In summary, our approach introduces a synchronization strategy that adaptively manages latency 

variation between multiple surgeons in real time, combines it with an enhanced RBAC mechanism 

supporting instantaneous role changes and urgent override scenarios, and demonstrates through 

simulation and conceptual design how these elements together improve both the safety (by preventing 

conflicting robot commands) and the security (by preventing unauthorized actions) of a collaborative 

telesurgery environment. This work offers a practical framework for multi-operator telesurgery by 

addressing the distinct challenges of managing multiple surgeon consoles and ensuring real-time, role-

specific access. 

2 Background 

Early telesurgery platforms (e.g., Marescaux et al., 2001) concentrated on single-surgeon control with 

stable connections, permitting minimal role switching or simultaneous inputs. In these systems, 

synchronization was simpler because a single operator issued commands, rendering buffering or latency 

compensation schemes typically sufficient. However, the advent of multi-surgeon arrangements creates 

a scenario in which two specialists, each assigned certain responsibilities, can issue commands 

simultaneously. Single-surgeon latency compensation is not sufficient to resolve conflicting command 

issues, as there is no built-in mechanism to determine which surgeon’s command should take precedence 

when timing overlaps. 
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Outside of medical contexts, multi-operator robot control has been explored in fields such as 

industrial automation, drone swarms, and collaborative assembly lines (Tian et al., 2022; Lee et al., 

2020). While these studies address concurrency, they often assume lower stakes for short-term command 

collisions or provide hierarchical control (e.g., one “master” operator with priority, others in secondary 

roles). In double-surgeon telesurgery, both surgeons may be equally authoritative. A single “master 

surgeon” architecture could hamper the benefits of two experts actively collaborating and, in 

emergencies, hamper rapid overrides from either participant. 

2.1. Synchronization in Double-Surgeon Telesurgery Cockpits 

Coordination among many surgeons managing various facets of a telesurgery robot is essential (Wen et 

al., 2024). This is applicable to systems necessitating coordinated actions from several operators, 

particularly in telesurgery systems, where the consequences of failure are significant (Bouteraa & 

Ghommam, 2009; Anvari et al., 2005). Synchronization in this context entails synchronizing the efforts 

of the surgeon and harmonizing the temporal perception across the system components to guarantee 

seamless and secure procedures. 

System Model and Clock Synchronization 

The telesurgery system consists of two primary components: surgeon consoles and the robotic surgery 

platform (Mohan et al., 2021). 

● Surgeon Consoles: These are the interfaces utilized by surgeons to engage with the telesurgery 

system. Surgeon consoles offer immediate input, manipulation of robotic equipment, and 

visualization of the operating area. 

● Robotic Surgery Platform: This comprises the robotic arms, endoscopic cameras, and additional 

surgical instruments, serving as the fundamental infrastructure. These components convert the 

surgeon's actions into tangible movements within the patient's body (Menaka et al., 2022). 

Each component functions on its local clock, which must be synced with a global reference time to 

guarantee the precise ordering and execution of time-stamped activities (Bassil et al., 2021). 

Latency Variance 

In addition to clock synchronization, we must minimize the latency differences between the physicians' 

consoles and the robotic surgical platform (Lum et al., 2009). Latency in this case, the duration between 

the time an action is performed by a surgeon and the time it is executed by the robot. Even with 

synchronized clocks, latency variations may cause desynchronization and impact the coordination of 

actions among surgeons. Significant latency delay begins around 300ms, and latency over 700ms is 

difficult to manage (Perez et al., 2016). 

For example, if one surgeon's console shows a delay of 100ms and another shows a latency of 300ms, 

a 200ms discrepancy may lead to unintended consequences, such as: 

● Uncoordinated movements: The robotic arms may operate asynchronously, potentially resulting in 

injury to tissue or equipment (Perez et al., 2016). 

● Misaligned time perception: Surgeons may experience the same event at varying times, which may 

cause confusion and mistakes (Perez et al., 2016). 

Telesurgery systems should measure, compensate for, and reduce latency variance to guarantee 

synchronized and coordinated execution of surgeons' actions. 
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Specific Synchronization Challenges 

When two equally authorized surgeons issue overlapping commands (e.g., simultaneously moving 

robotic arms toward different targets), standard single-operator buffering methods cannot easily 

determine which action to prioritize. Command collisions may result in abrupt robot movements or 

errors if both commands arrive at nearly the same timestamp, making precise surgical maneuvers risky. 

Even with universal time stamps, network inconsistencies mean a command sent by Surgeon A could 

arrive after Surgeon B’s later command. If the system naively executes commands by arrival time, 

Surgeon B’s instructions might incorrectly override Surgeon A’s. In high-latency scenarios, this can lead 

to a race condition (Iorio et al., 2013) where neither surgeon has a clear understanding of the robot’s 

immediate state. 

In a collaborative setting, each surgeon needs the ability to override or interrupt the other if an urgent 

complication arises (Bardram et al., 2000). Yet, these interrupts themselves must be synchronized. If 

Surgeon A does not see Surgeon B’s override in time, they might continue with a conflicting maneuver. 

Effective synchronization must consider the latency between an "override request" and its 

acknowledgment by the system, guaranteeing secure transitions of control. 

These problems highlight the necessity for adaptive monitoring, throttling methods, and real-time 

concurrency management. 

Coordinating Real-Time Overrides 

Some multi-operator systems allow a “priority shift” during emergencies (Bartek et al., 2019). For 

example, a senior user can override a junior user’s inputs. But the logic is often based on set hierarchies, 

while many surgeries depend on two equally skilled surgeons to work together. Sometimes, one surgeon 

may need to override another if there is a complication or misunderstanding. To handle such override 

permissions, we need a synchronization protocol. This protocol will handle the latency and RBAC layer. 

Synchronization Objective 

Xu et al., (2014) have shown in their study that latency between 0 to 200 ms is good enough for surgeons. 

This has minimal impact on the performance of the surgery. They highlighted the different levels of 

acceptable delay and noted that a latency of 800 to 1000 ms is dangerous. With this understanding, 

developers can create systems that handle latency challenges more effectively. 

Our goal is to create a framework that ensures that multi-surgeon systems are reliable even when 

there are latency challenges. We fix the synchronization challenges by using an adaptive synchronization 

strategy to detect when surgeon commands are not in sync with each other and to actively manage the 

latency variations. 

2.2. Role-Based Access Control in Double-Surgeon Telesurgery Cockpits 

Role-Based Access Control (RBAC) is a framework that limits access to system resources based on the 

user responsibilities (Sandhu, 1998). These methods ensure that users can only access the tools they 

need to do their jobs. RBAC is recognized for its function in controlling user access to information 

systems based on their jobs within the organization (Ferraiolo et al., 2001). 

RBAC reduces the risk of unauthorized actions in telesurgery by making the roles and duties of each 

individual clear. With this method, some surgeons may be given the power to manage and monitor only 

necessary robotic components. The permissions assigned will depend on the responsibilities of each 
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member of the surgical team. This could stop users from performing unauthorized actions (Asif & 

Khondoker, 2020) that may endanger patient safety. This may also improve surgeon collaboration. The 

system can adjust to integrate new roles and permissions to correspond with medical innovation 

(Madugalla & Perera, 2024). For RBAC to work, you need to plan ahead, understand the surgical 

process, and ensure that permissions align with the requirements of each surgery and participant. 

3 Proposed Adaptive Synchronization Strategy 

A system that can switch between passive monitoring and active intervention is an effective solution 

because network delays often change. Our adaptive method can handle two surgeons working at the 

same time who may send overlapping commands. Traditional methods sometimes rely on uniform 

buffering or fixed latency offsets, which are not insufficient when two surgeons operate a robotic system. 

Our approach: 

● Combines Passive and Active Modes: Instead of just tracking latency or uniformly buffering 

commands, we use passive monitoring that automatically switches to active throttling when a 

significant latency difference is found. This dual mode reduces delays and handles differences in real 

time better than just predicted or constant buffering methods. 

● Responds Dynamically to Varying Latencies: In many current methodologies, one surgeon is 

named as the primary controller and the other limited control. Our architecture adjusts the rate of 

commands based on the real latency between the console and the robot. This lets surgeons collaborate 

without using a hierarchical control system. 

● Integrates a Safety Threshold: By implementing an operational safety threshold, we ensure that the 

system halts when network conditions get too dangerous. This helps prevent significant robot error. 

● This synchronization design is therefore novel in that it not only monitors and adjusts latency in real 

time but does so with explicit support for multiple active surgeons who may both initiate critical or 

overlapping commands. Such is not sufficiently addressed by earlier proposed multi-surgeon 

systems. 

3.1. Passive Monitoring of Latency Variability 

Latency Measurement and Collection 

We propose to timestamp each action sent from a surgeon console with the local time at which it was 

sent. Upon receiving the action, the robotic platform logs the reception time. Formally, let 𝐶 =

{𝑐1, 𝑐2, . . . , 𝑐𝑛} be the set of surgeon consoles. For each console 𝑐𝑖 ∈ 𝐶, let 𝑇 = {(𝑡𝑠,𝑖,𝑗, 𝑡𝑟,𝑖,𝑗) | 𝑗 ∈ 𝑁} 

represent the set of timestamp pairs, where 𝑡𝑠,𝑖,𝑗 is the time when the  𝑗-th action is sent and 𝑡𝑟,𝑖,𝑗 is the 

time when it is received. 

Latency Calculation 

To find the latency for the  𝑗-th action from the console 𝑐𝑖, we include a clock synchronization offset 𝛥𝑖. 

The offset 𝛥𝑖 is the difference between the sender's clock and the receiver's clock at the same instant. 

The latency for the  𝑗-th action is expressed in Eq. (1): 

𝐿𝑖,𝑗 = (𝑡𝑟,𝑖,𝑗 − 𝑡𝑠,𝑖,𝑗) + 𝛥𝑖    (1) 

This latency value shows how long it takes for an action to move from the surgeon's console to the 

robot. 
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Sliding Window Monitoring of Latency Differences 

We propose to use a sliding window to monitor latency differences. This method involves calculating 

latency differences in a group of recent actions so that temporary spikes do not trigger false alarms. We 

define a sliding window 𝑊 of size 𝜔 actions. 

For each pair of consoles (𝑐𝑖 , 𝑐𝑘), we calculate the absolute latency difference for the  𝑗-th action as 

indicated in Eq. (2): 

𝛥𝐿𝑖,𝑘,𝑗 = |𝐿𝑖,𝑗 − 𝐿𝑘,𝑗|   (2) 

Where  𝑗 includes the actions within the current window. 

Threshold and Alert Mechanism 

We propose to use a predefined threshold 𝜃 and an alert ratio 𝛼 to determine when latency discrepancies 

are significant. The system triggers an alert if the ratio of latency differences within the window 𝑊 that 

exceed 𝜃 is greater than 𝛼. An alert is triggered if the conditions in Eq. (3) are met: 

1

𝜔
∑   

𝑗∈𝑊 1{𝛥𝐿𝑖,𝑘,𝑗>𝜃} > 𝛼  (3) 

Where 1{.} is the indicator function and it returns 1 if the condition inside the braces is true and 0 

otherwise. 

3.2. Active Command Throttling 

In this case, command throttling controls the rate at which commands are sent based on real-time 

conditions to keep surgeon actions in sync. We suggest the integrating command throttling as a proactive 

measure to ensure that all surgeon consoles transmit commands with approximately the same latency, 

hence preserving synchronization. 

Justification for Command Throttling 

● Minimizing Latency Impact: Command throttling changes how often commands are sent based on 

real-time latency readings. By aligning the transmission rate to match the latency of the slowest 

console (identified as 𝐿𝑚𝑎𝑥), commands from other consoles are sent more slowly. This reduces the 

possibility of asynchronous actions during surgical procedures. 

● Safety and Reliability: Instead of adding latency with buffering systems, command throttling 

enhances command delivery while maintaining real-time responsiveness. Buffering could negatively 

impact command execution which may compromise the accuracy of surgery and the patient's safety. 

Additionally, predictive measures might work in theory, but they might make telesurgery less safe 

because of the need for precise and quick control. 

● Operational Efficiency: Command throttling improves operational efficiency by changing the rate 

of command transmission based on latency assessments. This ensures that network resources are used 

optimally while preserving synchronization between the surgeon console and the robotic. 

Throttling Strategy 

The goal is to adjust the command transmission rate from each console based on real-time latency 

measurements. Let 𝜏𝑖 represent the transmission rate adjustment factor for console 𝑐𝑖. The transmission 

rate 𝑅𝑖 for the console 𝑐𝑖 is adjusted dynamically, as shown in Eq. (4): 

𝑅𝑖 = 𝑅𝑏𝑎𝑠𝑒 . 𝜏𝑖  (4) 
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Where 𝑅𝑏𝑎𝑠𝑒 is the base transmission rate, and 𝜏𝑖 is determined in Eq. (5) as the ratio of the maximum 

observed latency 𝐿𝑚𝑎𝑥 to the current latency 𝐿𝑖,𝑗: 

𝜏𝑖 =
𝐿𝑚𝑎𝑥

𝐿𝑖,𝑗
  (5) 

This adjustment guarantees that the transmission rate 𝑅𝑖 for each console is proportional to its latency, 

thereby aligning all consoles with the latency of the slowest console. 

Command Queue and Delay Mechanism 

The commands from each surgical console are queued for a predetermined duration as a result of the 

throttling mechanism. Let 𝐷𝑖,𝑗 represent the delay time for the 𝑗-th command from the console 𝑐𝑖. The 

delay time is computed in Eq. (6) to align the command transmission timing with the synchronized rate: 

𝐷𝑖,𝑗 = (
𝐿𝑚𝑎𝑥

𝐿𝑖,𝑗
− 1) . 𝑇  (6) 

where 𝑇 is the base delay period. During this delay, commands are held in the queue on the surgeon 

console, ensuring that transmission to the robotic platform is throttled according to the calculated rate. 

Implementation Considerations 

Implementing the throttling method requires ongoing observation of latency fluctuations and the 

adaptive modification of transmission rates. The command queue and delay mechanism provide 

synchronized transmission of all commands, hence reducing latency disparities. 

3.3. Simulation of Active Command Throttling 

We assessed the delay of command transfers from three simulated surgeon consoles to a simulated 

robotic system. The consoles, identified as console_1, console_2, and console_3, were evaluated to 

assess and analyze the latency in command transmission. Each console transmitted a total of 5000 

commands at a frequency of 5 instructions per second. 

Unthrottled Command Latency 

Figure 1 depicts the latency recorded for each console in the absence of command throttling. As 

anticipated, console_1, operating on the same host as the robot, demonstrated little delay. Console_2 

had moderate delay, and console_3 demonstrated the highest latency of the three consoles. 

 
Figure 1: Latency over time for each console without throttling 
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Throttled Command Latency 

To mitigate the disparate latencies and synchronize orders from all consoles, we re-executed the 

simulation with command throttling activated. The objective was to synchronize the command execution 

timings of all consoles with the console exhibiting the highest delay. The delay threshold has been 

established at 50 milliseconds. Figure 2 displays the outcomes subsequent to the implementation of the 

throttling mechanism. The latencies of console_1 and console_2 were augmented to enhance 

synchronization with console_3, illustrating the efficacy of the throttling mechanism in aligning 

command delivery. 

 
Figure 2: Latency over time for each console with throttling 

Discussion 

The data indicate that, in the absence of throttling, there exists a considerable disparity in latency among 

the three consoles, with console_3 consistently exhibiting the highest latency. The implementation of 

the throttling mechanism enhanced the synchronization of command delivery times. 

3.4. Operational Safety Threshold 

Exceeding a preset safety threshold in latency disparities between surgeon consoles in telesurgery 

systems signifies potential synchronization problems that may jeopardize patient safety and surgical 

accuracy. The safety threshold is the latency variance beyond which active command throttling fails to 

synchronize surgeons' actions. As soon as these differences are detected, operations must stop 

immediately to prevent unwanted robotic movements and ensure that surgical procedures stay accurate 

and in sync across all consoles. 

Safety Threshold Implementation 

To implement an operational safety threshold, we need the following: 

1. Threshold Definition: Establish a safety threshold 𝛥𝐿𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 over which operations are considered 

dangerous. This threshold is determined by system requirements and safety regulations. A safety 

response is triggered if the latency difference exceeds 𝛥𝐿𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑. 

2. Safety Response Mechanism: Establish a protocol to stop activities when 𝛥𝐿𝑖,𝑗, the latency difference 

between actions from consoles 𝑐𝑖 and 𝑐𝑗, exceeds 𝛥𝐿𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑. This could involve: 
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● Sending an instant notification to operators and surgeons. 

● Automatically halting the robotic platform and surgical procedures. 

● Commencing procedures for system diagnostics and recalibration. 

4 Implementing Role-Based Access Control 

In the following sections, we provide more details about the definition of permissions for robotic 

components, the pre-surgery planning and role assignment process, as well as the challenges and 

solutions related to the implementation of a role-based access control system in telesurgery. 

4.1. Defining Permissions for Robotic Components 

The level of control in a telesurgery system is important to its success. This brings the need for a well-

organized permission system for surgeons to control robotic components. Each surgeon will be able to 

perform the actions they are permitted to. RBAC systems will categorize permissions into various types 

depending on the needed robotic operation and control. 

Table 1 outlines the permissions we derived from (Laso et al., 2019) that are relevant to telesurgery 

systems. It serves as a framework to help allocate access levels to robotic components. Each type of 

permission is designed to maintain operational security and flexibility. Surgeons must have only the 

necessary access to perform their tasks, and the system must prevent unauthorized actions. The 

allocation of these permissions is an important aspect of pre-surgery preparation. It should be done after 

considering the requirements of the operation, the robotic components that will be used, and the roles of 

each member of the team. 

Table 1: Permissions in Role-Based Telesurgery Systems 

Permission Type Description 

Control Allows a surgeon to directly manipulate a robotic component, such as moving a 

robotic arm or activating an endoscopic camera. 

Adjustment Permits a surgeon to modify the settings or parameters of a robotic component. This 

allows adjusting aspects such as speed, range of motion or tool selection. 

Observation Grants a surgeon the ability to view the status, output, and live feed of a robotic 

component without allowing direct control or adjustments. 

Override Provides the capability to temporarily take control over a robotic component. This is 

usually reserved for senior surgeons or specialists who respond to emergency 

situations during surgery. 

Lock/Unlock Enables a surgeon to lock a robotic component and subsequently unlock it. This is 

important for patient safety during the critical phases of surgery. 

The assigned permissions must be planned appropriately and allow the surgeon to contribute to the 

operation. This method of permission assignment enhances the safety of operations. It also guarantees 

that the system can adapt to the dynamic nature of surgical procedures. 

4.2. Pre-Surgery Planning and Role Assignment 

Presurgical planning is the process of organizing and aligning resources, staff, and protocols before a 

surgical procedure to improve patient safety and outcomes (Teunissen et al., 2020). The responsibilities 

of each surgeon are defined during the planning phase. With the introduction of RBAC, we need to 

consider the following workflow before surgery commences: 
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● Surgical Team Assembly: Identify and assemble the surgical team, including all surgeons who will 

participate in the procedure. 

● Role Definition: Based on the surgery's requirements and each surgeon's expertise, define specific 

roles for the procedure. 

● Permission Assignment: Assign permissions to each role, determining what each surgeon can 

control, adjust, observe, or override in the robotic system. 

● Operational Protocols: Establish protocols for emergencies, including how the override permission 

should be used. 

Defining Roles and Permissions 

The use case outlined in Listing 1 demonstrates how roles and permissions are programmatically 

assigned to surgeons and anesthesiologists. This allows each participant to interact with the system 

within their areas of expertise and responsibility. 

Listing 1 Defining roles and permissions 

roles = {Lead_Surgeon, Assistant_Surgeon, Anesthesiologist} 

permissions = {Control, Adjustment, Observation, Override, Lock/Unlock} 

 

rolePermissions = { 

    Lead_Surgeon: [Control, Adjustment, Observation, Override, Lock/Unlock], 

    Assistant_Surgeon: [Control, Observation], 

    Anesthesiologist: [Control, Adjustment, Observation] 

} 

This structure allows for a flexible and secure assignment of operational capabilities and grants each 

team member the access needed to fulfill their designated role. 

Assigning Robotic Components to Permissions 

Once roles and permissions are defined, they must be mapped to particular robotic components. As 

shown in Listing 2, this mapping specifies who can do what on every component of the robot. 

Listing 2 Assigning robotic components to permissions 

roboticComponents = {Robotic_Arm, Endoscope, Anesthesia_Machine, Vital_Signs_Monitor} 

 

componentPermissions = { 

    Lead_Surgeon: { 

        Robotic_Arm: [Control, Adjustment, Lock/Unlock, Override], 

        Endoscope: [Control, Observation] 

        Vital_Signs_Monitor: [Observation] 

    }, 

    Assistant_Surgeon: { 

        Endoscope: [Control, Observation] 

        Vital_Signs_Monitor: [Observation] 

    }, 

    Anesthesiologist: { 

        Endoscope: [Observation] 

        Anesthesia_Machine: [Control, Adjustment], 
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        Vital_Signs_Monitor: [Observation] 

    } 

} 

Each robotic component has a particular function in the surgical ecosystem. 

● Robotic Arm: Used for the manipulation of surgical instruments and tools within the operating area. 

● Endoscope: Enables the visualization of internal structures and organs during procedures. 

● Anesthesia Machine: Administers anesthesia to the patient for comfort and pain management during 

the surgery. 

● Vital Signs Monitor: Monitors the patient's vital signs, including heart rate, blood pressure, and 

oxygen levels for feedback on the patient's condition. 

The system ensures that surgeons’ interactions are aligned with their responsibilities by assigning 

permissions based on their roles. 

After roles and permissions have been assigned, the surgical team establishes protocols for 

emergency situations and any possible overrides. Such protocols depend on the specifics of surgery and 

the regulatory framework that guides medical practice. 

4.3. Real-Time Role Shifts, Concurrency-Aware Permissions, and Immediate Overrides 

We add extra features to the traditional RBAC model to allow changes to roles and permissions during 

live procedures. Specifically, we incorporate real-time role shifts, concurrency-aware permissions, and 

immediate overrides. These features are necessary in the double-surgeon cockpit where two equally 

competent surgeons may access robotic components at the same time. 

Real-Time Role Shifts 

A real-time role shift is the instantaneous assignment (or revocation) of a role 𝑟 ∈ 𝑅 to a surgeon 𝑢 while 

the telesurgery system is operational, without requiring a system restart or manual reconfiguration step. 

● Role Set and Assignment Function: Let 𝑅 =  {𝑟1, 𝑟2, 𝑟3, . . . , 𝑟𝑚} be the set of all possible roles in 

the telesurgery system (e.g., Lead_Surgeon, Assistant_Surgeon, Trainee,…). 

We denote the set of surgeons by 𝑈 = {𝑢1, 𝑢2, 𝑢3, . . . , 𝑢𝑛}. 

A function 𝑅𝑜𝑙𝑒𝑠𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑: 𝑈 → 2𝑅 maps each surgeon to a subset of roles they currently hold. 

● Real-Time Update Operation: We define a function 𝐴𝑠𝑠𝑖𝑔𝑛𝑅𝑜𝑙𝑒(𝑢, 𝑟) that updates 

𝑅𝑜𝑙𝑒𝑠𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑(𝑢) by adding 𝑟 to the surgeon u’s current roles; similarly 𝑅𝑒𝑣𝑜𝑘𝑒𝑅𝑜𝑙𝑒(𝑢, 𝑟) 

removes 𝑟. 

● These operations can occur mid-procedure (e.g., if a senior surgeon delegates a specialized tool to 

another surgeon). 

● Each update triggers an event to recalculate permissible actions (Section 4.3.2) in near real time. 

1. State Machine View: Conceptually, each surgeon 𝑢 is in a role state 𝑆(𝑢) ⊆ 𝑅. We can model real-

time role shifts as a finite state machine. Eq. (7) denotes role assignment 𝐴𝑠𝑠𝑖𝑔𝑛𝑅𝑜𝑙𝑒(𝑢, 𝑟), and Eq. 

(8) denotes role revocation 𝑅𝑒𝑣𝑜𝑘𝑒𝑅𝑜𝑙𝑒(𝑢, 𝑟). 

𝑆(𝑢) → 𝑆(𝑢) ∪ {𝑟}   (7) 

𝑆(𝑢) → 𝑆(𝑢)\{𝑟}  (8) 

These transitions must be validated against safety constraints, ensuring the requested role shift does 

not conflict with concurrency rules or emergency lockouts. 
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Concurrency-Aware Permissions 

Concurrency-aware permissions extend the RBAC concept to account for multiple surgeons requesting 

simultaneous access to the same robotic components, each with distinct privileges or real-time roles. 

1. Permission Sets and Resource Mapping: Let 𝑃 be the universal set of permissions (e.g., Control, 

Adjustment, Observation, etc.). 

Each role 𝑟 ∈ 𝑅 maps to a subset of permissions 𝑃𝑒𝑟𝑚(𝑟) ⊆ 𝑃 

For each robotic component 𝑐 ∈ 𝐶, there is a function 𝐴𝑙𝑙𝑜𝑤𝑒𝑑(𝑟, 𝑐) ⊆ 𝑃 that specifies which 

permissions are valid for role 𝑟 on component 𝑐. 

● For example, a Lead_Surgeon might have: 

𝐴𝑙𝑙𝑜𝑤𝑒𝑑(𝐿𝑒𝑎𝑑_𝑆𝑢𝑟𝑔𝑒𝑜𝑛, 𝑅𝑜𝑏𝑜𝑡𝑖𝑐_𝐴𝑟𝑚) = {𝐶𝑜𝑛𝑡𝑟𝑜𝑙, 𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡, 𝑂𝑣𝑒𝑟𝑟𝑖𝑑𝑒} 

● An Assistant_Surgeon might have: 

𝐴𝑙𝑙𝑜𝑤𝑒𝑑(𝐴𝑠𝑠𝑖𝑠𝑡𝑎𝑛𝑡_𝑆𝑢𝑟𝑔𝑒𝑜𝑛, 𝐸𝑛𝑑𝑜𝑠𝑐𝑜𝑝𝑒) = {𝐶𝑜𝑛𝑡𝑟𝑜𝑙, 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛} 

2. Concurrent Access Logic: When two surgeons 𝑢𝑖 and 𝑢𝑗 attempt actions on the same robotic 

component 𝑐, the concurrency-aware system must reconcile possible overlapping permissions. We 

define a function 𝐶𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑒𝑟𝑚𝑠(𝑢𝑖, 𝑢𝑗, 𝑐) in Eq. (9) to yield the effective permissions if both 

surgeons simultaneously operate component 𝑐. 

𝐶𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑒𝑟𝑚𝑠(𝑢𝑖, 𝑢𝑗, 𝑐) = 𝐴𝑙𝑙𝑜𝑤𝑒𝑑(𝑟𝑖, 𝑐) ∪ 𝐴𝑙𝑙𝑜𝑤𝑒𝑑(𝑟𝑗, 𝑐)   (9) 

where 𝑟𝑖 ∈ 𝑅𝑜𝑙𝑒𝑠𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑(𝑢𝑖), 𝑟𝑗 ∈ 𝑅𝑜𝑙𝑒𝑠𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑(𝑢𝑗) 

However, if a policy states that only one user can hold Control at a time, the concurrency manager 

must apply a conflict resolution step. This may degrade Control for the second user to Observation, 

or put the second user in a wait state, depending on the configured policy. 

3. Conflict Resolution: To prevent collisions, concurrency-aware permissions often rely on a priority 

or arbitration mechanism. One approach is to define a total ordering ≼ over roles (e.g., Lead_Surgeon 

≼ Assistant_Surgeon, indicates the lead surgeon outranks the assistant in case of conflict). 

Another approach is to monitor latency or the command queue to decide which user’s command is 

enacted first. The final set of effective permissions is shown in Eq. (10): 

𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑃𝑒𝑟𝑚𝑠(𝑢𝑖, 𝑐) = 𝑅𝑒𝑠𝑜𝑙𝑣𝑒(𝐴𝑙𝑙𝑜𝑤𝑒𝑑(𝑅𝑜𝑙𝑒𝑠𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑(𝑢𝑖), 𝑐), 

𝐶𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑒𝑟𝑚𝑠(𝑢𝑖, 𝑢𝑗, 𝑐), . . . ) (10) 

Where 𝑅𝑒𝑠𝑜𝑙𝑣𝑒(. ) applies concurrency rules (priority, queue time, or policy constraints) in near real 

time. 

Immediate Overrides 

An immediate override is a high-priority operation that escalates a surgeon’s permissions or revokes 

certain permissions from another user to manage emergencies or critical actions. 

1. Override Role 𝒓𝑶: We define a special role 𝑟𝑂 ∈ 𝑅 (e.g., Emergency_Override) that contains a superset 

of necessary permissions across components to handle urgent scenarios, such as controlling the robotic 

arm, endoscope, anesthesia settings, etc. A user who acquires 𝑟𝑂 can forcibly override conflicting 

commands from other surgeons. 

2. Trigger Condition: The override can be triggered by manual request from a surgeon, or by the system 

when an anomaly is detected due to high and varied latency, concurrency checks, or other unsafe 

conditions. The system may automatically elevate the user with the most stable connection to 𝑟𝑂. 
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3. Override Safety: An override should not compromise patient safety. Therefore, it may have built-in 

checks, such as: 

● Confirming the requesting surgeon’s credentials (i.e., they must already be assigned a high-level 

role, like Lead_Surgeon). 

● Ensuring the system is not already in a halted state due to extreme latency or an active procedure 

pause. 

● Logging and possibly requiring secondary confirmation if local regulations demand a “two-

physician confirmation” process for certain overrides. 

Integration With Synchronization Logic 

These real-time RBAC features (role shifting, concurrency rules, immediate overrides) also interface 

with the adaptive synchronization layer. If the system detects that one surgeon’s connection becomes 

dangerously latent, the concurrency manager can: 

● Temporarily revoke or downgrade that surgeon’s role, reducing the risk of collision with commands 

that arrive far out of sync. 

● Grant Override to the surgeon with stable latency if an urgent decision or a critical command queue 

is building. 

This integration ensures that latency management (from the synchronization subsystem) and 

permission management (from the RBAC subsystem) coordinate to maintain safety and avoid the robotic 

conflicts that can arise when two surgeons issue commands concurrently under unpredictable network 

conditions. 

5 Discussion 

Although our adaptive synchronization and RBAC mechanisms have been demonstrated through 

simulation, successfully deploying them in a hospital environment entails additional design and 

integration work. Hospitals commonly rely on virtual private networks (VPNs) or dedicated 

telemedicine links, which can introduce variable bandwidth and transient latency spikes. Our system’s 

passive monitoring and command throttling approach is intended to dynamically adjust command rates 

in response to these spikes. However, real-world usage may require failover strategies. For example, 

quickly switching to a local backup or buffering system when remote connectivity degrades below an 

acceptable threshold. 

Another important consideration is resource utilization. Complex telesurgery procedures can 

generate large volumes of real-time data (e.g., high-definition video feeds, multiple control streams, 

haptic feedback). While our simulations indicate that the overhead of continuous latency checks and on-

the-fly RBAC validation is manageable, more thorough testing under real hospital workloads will be 

needed to confirm that the approach does not overburden network or computing resources. 

5.1. Addressing Practical Network Constraints 

Many hospitals use segmented networks with strict firewall rules and bandwidth allocation, especially 

for operating rooms. These security measures can influence end-to-end latency and packet arrival 

consistency. To mitigate these issues, our methodology includes: 

● Adaptive throttling to handle periods of low throughput or high jitter, by slowing down high-

frequency command bursts. 
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● Operational safety thresholds that halt procedures if latency variance escalates beyond a safe level, 

preventing the risk of out-of-sync or conflicting commands under severely unstable network 

conditions. 

Before clinical use, we recommend pilot connectivity tests and controlled “network stress” 

simulations to verify that hospital IT policies and bandwidth constraints do not compromise the safety 

or speed of remote surgical operations. 

5.2. Integration into Clinical Workflow 

A double-surgeon cockpit fundamentally changes how surgical teams operate, so user training is 

essential. Both surgeons must become accustomed to how the system: 

● Evens out timing differences between consoles, sometimes adding brief delays or queued commands. 

● Handles real-time overrides, so that one surgeon’s emergency intervention for example does not 

surprise the other. 

● Manages concurrent input by enforcing role-based permissions that can change during the procedure. 

Preparation would involve simulation-based training, like using existing robotic surgery simulators 

where both surgeons practice collaborative procedures under varying simulated network conditions. This 

procedure can make them more familiar with system functions including UI alerts that indicate the 

system is actively throttling commands or granting an override request. 

5.3. Regulatory Compliance 

Since telesurgery systems are considered medical devices, they need to comply with certain standards 

and guidelines. We must maintain an audit trail of actions related to RBAC and adaptive synchronization 

for post-operative review and traceability. It should have a risk management strategy that is aligned with 

standards like ISO 14971 to identify, evaluate, and mitigate hazards such as extreme latency spikes or 

unauthorized overrides. There is a fail-safe feature in the suggested framework that causes a "safe pause" 

if certain conditions are met. All of these steps work together to make sure that patient safety is top 

priority. 

5.4. Future Plans for Validation and Deployment 

We expect several important phases to verify that our suggested approach can efficiently go from 

simulation to clinical reality. First, we need to perform extended simulation under realistic conditions. 

This includes using network topologies that are similar to those in hospitals, encryption methods, and 

audio and video streaming. These will help validate that command throttling and latency monitoring 

function reliably under near-real conditions. 

Formal studies of usefulness will also be very important. By interviewing surgeons, surgical 

residents, and operating room staff, we can find out how well the concurrency management and role-

based rights are received by users. Getting feedback on the design of the interface and the override 

processes will help improve the system. 

In addition to usability and simulation studies, pilot telesurgery reviews need to be done. Subject to 

institutional ethics permissions, they will comprise test techniques on animal models or cadaver labs. 

The system's performance will be judged during real surgeries, with a focus on operation time, error 

rates, success in timely overrides, and any unexpected system halts. 
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We must consider the human factor of double-surgeon telesurgery. Simulation-based training courses 

will help familiarize surgeons with concurrency mechanisms. We need well-designed user interfaces 

that use color-coded status indicators and also shared action logs to help increase cooperation. If the 

system is not well-understood, surgeons may provide conflicting commands or miss important alarms. 

Communication protocols, role definitions, and interface signals must account for real-world surgeon 

behavior to help reduce errors. Although at this point we are not using particular user-centered designs, 

the success of any multi-operator telesurgery system depends on how well it combines technical 

implementations with human behavior. 

Finally, a regulatory and compliance review is necessary. We can address safety and data privacy 

concerns by collaborating with relevant authorities. We can ensure that our proposed method is not 

merely a theoretical framework by planning these next phases. It must be noted that the framework can 

only be ready for practical adoption once rigorous technical and clinical milestones are achieved. 

6 Conclusion 

Our passive monitoring feature detects when there is excessive latency discrepancy between surgeons 

who are simultaneously controlling a robot. The active command throttling feature ensures that the 

latency difference between the surgeons is approximately the same if the discrepancy is minor. It 

achieves this by queuing commands and releasing them at an adjusted rate. To prevent conflict, the 

throttling mechanism gives priority to the console with higher latency compensation if surgeons are 

sending high frequency commands at the same time. The system triggers a temporary halt to avoid unsafe 

simultaneous movements if latency differences exceed the operational safety threshold. 

In a high-latency environment, Command A from Surgeon 1 can arrive after Command B from 

Surgeon 2, even if Surgeon 1 initiated it first. By time-stamping commands and comparing send/receive 

times, the system can reorder actions internally or apply brief holds to realign out-of-sequence 

instructions. Throttling also helps smooth out arrival disparities by synchronizing the rate of outgoing 

messages, thus mitigating race conditions in which commands arrive in a confusing order. 

Occasionally, one surgeon needs to override or interrupt the other (e.g., to address a sudden 

complication). Our adaptive synchronization coordinates the override commands just like other high-

priority inputs. First, any large latency disparity would trigger the safety threshold check, ensuring both 

surgeons see the robot’s most recent state before an override takes full effect. Next, by integrating with 

RBAC, the system grants immediate override permissions to the requesting surgeon if policy permits. 

During the override, throttling remains active, preventing the other surgeon’s delayed commands from 

inadvertently executing after the override is in place. 

This mapping of concurrency pitfalls (conflicting commands, out-of-order arrivals, and parallel 

overrides) to the passive monitoring, active throttling, and safety threshold mechanisms illustrates how 

our synchronization strategy handles real-time multi-operator control. We ensure that surgeons can 

collaborate without risking collisions or out-of-sync manipulations by combining these components. 

The proposed implementation of RBAC in double-surgeon telesurgery cockpits enhances the security 

of telesurgical procedures. The system ensures that each surgeon interacts with the robotic components 

within their designated operational boundaries. This approach reduces the risk of unauthorized actions 

and also creates an environment where each team member can perform their tasks. 

In summary, our work introduces an adaptive synchronization strategy and a dynamic RBAC 

mechanism that address the challenges of multi-surgeon telesurgery. Previous methods usually relied on 

a single operator or a strict hierarchy. We take a different approach by managing latency in real time 
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and continuously checking each surgeon’s role. We integrate passive monitoring, command throttling, 

and on-the-fly override permissions. This creates a framework that handles conflicting commands, out-

of-order arrivals, and urgent role changes. This framework surpasses standard telesurgery models and it 

shows that we can combine real-time concurrency and access control to improve patient safety. 
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