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Abstract 

As high-speed railways continue to expand and the speed of trains increases, the wireless 

transmission of train control signals and mobile internet access needs to be done in a reliable and 

timely manner. The demands for these needs, along with other requirements, are causing the mobile 

communication systems for railways to evolve from the traditional GSM-R-based narrow-band 

systems to more advanced broadband options. The narrow band systems like GSM-R do not include 

newer real-time features offered by LTE-R and 5 G-R systems, such as multimedia video 

surveillance, dispatching IoT-enabled railways, and multimedia support. The paper starts by 

explaining the existing GSM-R system, which is straightforward, but highlights the shortcomings of 

the system. The focus is drawn to new user requirements of enabling data services and further 

evolving user demands to outline the most important benchmarks for future railway communication 

systems. The developments in wireless technologies and network structures suitable for railway 

mobile communication systems are also studied. Then, advanced systems are analyzed to meet the 

challenges of future technology and mobile communication needs. The paper covers all these points 

and provides a conclusion based on the findings, which the readers can access directly. 
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1 Introduction 

The development of high-speed railway HSR as a new mode of transport is being adopted in the world 

because of its safety, speed, and efficiency. HSR transport has been built in Austria, Belgium, China, 

France, Germany, Italy, Japan, the Netherlands, Poland, Portugal, Russia, South Korea, Spain, Sweden, 

Turkey, the United Kingdom, the United States, and Uzbekistan, connecting the major cities of these 

countries. Europe is the only region where HSR lines cross international borders. In December 2017, 

China had built 25,000 kilometers of HSR, accounting for 2/3 of the total in the world, and had a capacity 

of more than 1.4 billion passengers annually (Lu, 2017). Bullet trains that run between Beijing and 

Shanghai had their maximum speed increased to 350 km/h in September 2017 (Zhen, 2017). 

Table 1 contains the overview of the HSR systems of the countries under discussion and is based on 

the information provided by the International Union of Railways UIC and several other online sources 

(International Union of Railways, 2018). With the expansion of HSR throughout the globe and an 

increase in train speeds, the reliability and promptness of wireless transmission systems for sending 

control signals on the train and internet access for passengers are increasingly critical (Khoeurt et al., 

2023; Liu & Yuan, 2010; Ayesh, 2024). 

The mobile communication system is a bridge between the ground infrastructure and the trains, 

essential for the safe and efficient operation of HSR networks. Mobile communication standards have 

been developed over the years. The first international mobile communication standard for railways, the 

Global System for Mobile Communications-Railway (GSM-R), facilitates reliable two-way 

communication to transfer movement authority, speed restrictions, control signals, etc (Sniady & Soler, 

2012; Sniady et al., 2015). Although widely accepted and proven reliable, it has a slow adoption rate 

due to the increasing demand in the railway industry. As mobile systems shift towards 4G and 5G, 

railway telecommunication systems must evolve as well (Aguado et al., 2011).   

Table 1: Development of High-Speed Railways (HSR) Worldwide by 2017 

Country HSR in Operation 

(km) 

Maximum Operating Speed 

(km/h) 

Population Coverage 

(%) 

China 25,000 350 10.70 

Spain 3,100 320 12.69 

Germany 3,038 320 18.28 

Japan 2,765 320 36.55 

France 2,647 320 12.96 

Sweden 1,706 200 21.41 

United Kingdom 1,377 300 11.99 

South Korea 1,104.5 300 44.57 

Italy 999 200 18.47 

Russia 845 250 12.22 

Turkey 802 250 7.00 

Finland 609.5 220 1.89 

Uzbekistan 600 250 9.01 

Austria 352 230 27.55 

Belgium 326 300 7.83 

Netherlands 175 300 11.99 

Poland 143 200 12.57 

Norway 64 210 12.44 

United States 54.6 240 3.73 
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LTE-R has become a topic of interest over the years due to the commercial success of LTE. Nokia 

deployed the first LTE-R production network in South Korea in 2016 (Nokia, 2016). LTE-R utilizes 

advanced physical-layer technologies such as Orthogonal Frequency Division Multiplexing (OFDM) 

and Multiple-Input Multiple-Output (MIMO) alongside all-IP packet switching and flat network 

architecture at the network layer. All these components allow LTE-R to provide data transmission speeds 

up to 100 Mbps with a 20 MHz bandwidth and latency as low as 100 ms at high speeds (Sniady & Soler, 

2013). Video surveillance and multimedia dispatching while on a timeline boost the range of services 

LTE-R covers compared to tri-VR, making it a more comprehensive framework. 

Under 4G systems, LTE Advanced (LTE-A) seems to leave a gap in supporting primitive railway 

operations like autonomous train functionalities or massive-scale RIoT connectivity. Although we 

already possess full-fledged automatic train operation systems, they cannot handle complex or 

emergency scenarios. In these scenarios, the International Telecommunication Union (ITU) suggests 5G 

as the mobile network technology for autonomous driving with its massive RIoT connections and high-

speed internet for passengers (Malarvizhi et al., 2020; International Telecommunication Union, 2003). 

It is estimated that 5G will provide extremely high data rates (around 1 Gbps) and significant network 

capacity advancement (up to 1,000x). Also, the lag time is anticipated to range between 1-5 ms.  

According to ITU, by the end of 2015, 5G will have three main application scenarios: enhanced 

mobile broadband (eMBB), which will be served by eMTC, and ultra-reliable low-latency 

communication (LLC). The framework of high-speed railways comes with an abundance of passengers, 

swift speeds, and many sensors, making it ideal for the three domains. In 2019, China announced the 

world's largest 5G test network, with expectations of commercial use in 2020 (Wang, 2017). With the 

global rollout of 5G, it is expected that railway mobile communication systems across the world will 

possess greater functionality with the development of 5G-Railway (5G-R) systems (Muralidharan, 

2024). 

While there has been an increasing amount of research done on GSM-R, LTE-R and even 5G 

technologies, there are very few studies focused on the 5G-based communication systems designed 

specifically for railway applications (Booch et al., 2025) (Trisiana, 2024). This paper seeks to bridge 

that gap by discussing in detail the existing railway mobile communication systems and studying their 

prospective developments along with the technical obstacles they present. 

The rest of this paper is organized as follows. Section II analyzes the GSM-R system and describes 

its shortcomings. Section III deals with new user expectations and emerging data services, introducing 

relevant KPIs for new systems. Section IV examines new wireless technologies and network designs for 

next-generation railway communications, outlining the associated technical challenges. Finally, Section 

V concludes with the overarching insights and recommendations compiled during the research process. 

2 Mobile Communications Systems for Railways 

GSM-R, or Global System for Mobile Communications-Railway, is the first mobile communication 

system explicitly dedicated to international driving and controlling train operations (Shao & Jiang, 

2015). By IEEE standards, it was developed by the Union International des Chemins de Fer (UIC), which 

built upon the committed compatibility of services (CoCS) framework. The system is based on analog 

systems and cable-bound interfaces with GSM technology. It exploits the benefits of commercial 

wireless infrastructure while dismantling older, incompatible analog and cable-bound systems, which 

relieves patchwork networks. Specialized base stations are usually installed in remote areas along the 

railway tracks. GSM-R is mostly deployed using fixed base stations bordering the railway lines, and 
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increased coverage solutions, directional antennas, and leaky feeders are utilized for tunnels and 

difficult-to-reach areas. 

Different regions have varied allocations for GSM-R. It works in specific frequency bands, supports 

data transmission of 9.6 kbit/s, and accommodates up to a maximum speed of 500 km/h trains. For 

example, Europe uses the 876–880 MHz (uplink) and 921–925 MHz (downlink) bands, while other 

countries, including China, use slightly different allocations. GSM-R in China uses 19 effective channels 

with 21 available, each channel consisting of 0.2 MHz bandwidth while maintaining a base station 

distance of 3 to 5 kilometers to provide strong and resilient coverage. 

 

Figure 1: The Network Structure for Network Structure of GSM-R 

On a functional level, GSM-R comprises the core services of GSM, augmenting it with railway-

specific features like Enhanced Multilevel Precedence and Preemption (eMLPP), Voice Broadcast 

Service (VBS), and Voice Group Call Service (VGCS). These services facilitate mission-critical 

activities, including dispatching, train control communications, and enumeration. Nevertheless, despite 

these efforts, operators face significant shortcomings in modern railways (Figure 1). The system’s 

latency, approximately 400 ms, in conjunction with a low data rate, makes it inapt for new emerging 

applications such as real-time video services or low-latency interactive services. Moreover, the system’s 

capacity is severely limited by a spectrum of 4 MHz because adjacent frequency bands are heavily 

utilized, complicating expansion. Equally important, passenger connectivity, or the lack of it, is another 

major drawback as the system does not accommodate mobile internet, forcing passengers to rely on 

poorly performing public networks. 

With the growth of high-speed rail travel and mobile internet, railway systems require modernization. 

According to UIC estimates, its lifecycle will end by 2025. To solve some of GSM-R’s difficulties, such 

as frequent handovers in high-speed environments, loose limits have been developed due to high-speed 

RoF technology (Figure 2). RoF moves complex signal processing from the base station to a centralized 

control unit with Remote Antenna Units (RAUs) connected by optical fiber. This technology has been 

implemented with the Shanghai Transrapid MAGLEV system, which maintains reliable communication 

up to 500 km/h. 
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Figure 2: Service Model Structure for GSM-R 

3 A Business Report on Future Railway Mobile Communication Systems 

Real-time and all-encompassing communications are critical to ensure the reliability of railway 

operations with the sustained increase in train speed and reduced frequency intervals. Like other modes 

of transportation, railways are under pressure to meet excellent high-speed internet and communication 

system services for operational functions and customer satisfaction.   

 

Figure 3: Five Representative Scenarios of Communication 
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Emerging services for the future railway mobile communication systems include real-time video 

surveillance and high-definition cameras along the tracks, which would enable transmitting real-time 

footage to permit drivers to detect possible hazards better. These video feeds will also assist in meeting 

various operational requirements, like multimedia dispatching. Further, vital services include train-to-

train (T2T) direct communication. Unlike existing systems that rely solely on train-to-infrastructure 

(T2I) link systems, T2T communication allows the sharing of the location and status of the trains in real-

time. This communication is crucial for the enhancement of safety measures as passengers would reduce 

the chances of rear-end collision ensuing due to infrastructure failure and redundancy in the pre-existing 

system. 

In cutting-edge train communication systems, train multimedia dispatching should also be facilitated. 

Current systems are restricted to data and voice communication, which most likely does not allow 

dispatchers to interpret ground conditions accurately. Adding text data, images, and live video feeds will 

enhance situational awareness and efficiency, especially in emergency responses. Furthermore, 

developing the Railway Internet of Things (RIoT) is equally essential. Bridge and tunnel sensors will 

remotely send health and maintenance data to control centers, enabling remote inspections using safety 

checks and predictive maintenance algorithms. 

A less studied but equally important criterion is passenger connectivity. As internet use continues to 

expand, providing high-speed, consistent internet access throughout all train stations is a growing need. 

Passengers expect the ability to browse the web, watch high-definition videos, and conduct work during 

travel, necessitating expansive wireless coverage and bandwidth (Masson & Berbineau, 2017). 

To respond to these challenges, forthcoming railway communication systems must incorporate high 

data rate capabilities (from several Gbps to tens of Mbps). For example, advanced broadband train 

control systems have been proposed for the CRH3A EMU. These concepts show that with average usage 

rates, user penetration, and equipment capacity, a train with 1,114 passengers could theoretically require 

over 160 Mbps in passenger throughput. This number is orders of magnitude above the limits of existing 

narrowband systems such as GSM-R. As a result, a shift from narrowband to broadband mobile 

communication systems is imperative. Increased bandwidth will require accurate real-time monitoring, 

IoT applications, harsh passenger internet access, and extensive multimedia dispatching in the high-

speed rail domain (Lannoo et al., 2007; Shi et al., 2011). 

4 Future Railway-dedicated Mobile Communication Systems 

For integrated support of railway activities, five representative scenarios of communication have been 

identified: Train to Infrastructure (T2I) communication, direct Train to Train (T2T) communication, 

Internet access within the carriages, communication within the station, and Infrastructure to 

Infrastructure (I2I) communication (Ai et al., 2015), as shown in Figure 3. Considering that wired 

communications are usually implemented for infrastructure-to-infrastructure links, which are less 

technically demanding, this subsection will concentrate on the first four wireless communications 

scenarios. Because of the variety of services and operational contexts, the future design of mobile 

communication systems for railways is heterogeneous at one or several frequency bands and multiple 

access technologies will be required. 

 

Figure 4: The Overall Structure of LTE-R 

IMS

IP/EPC

eNodeB

eNodeB

eNodeB
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A. T2I Communication Systems 

Fulfilling the requirements of future high-speed rail (HSR) systems will include services like video 

streaming and transmission of live images, which will require changing T2I communication systems. 

Following the adoption of LTE for commercial purposes, LTE-R (Long-Term Evolution for 

Railways) is undergoing development as a successor to GSM-R. While both structures have similarities, 

LTE-R employs a flatter network topology (refer to Figure 4). This means eNodeBs and network routers 

are directly interconnected, reducing system latency (Gao & Sun, 2010). LTE-R integrates sophisticated 

technologies such as Orthogonal Frequency Division Multiplexing (OFDM) and Multiple Input Multiple 

Output (MIMO). With MIMO, the transmission of multiple independent data streams becomes possible, 

thus increasing the data rate without the need for additional bandwidth. Furthermore, OFDM reduces 

the chances of interference during the processing of MIMO signals by breaking broadband channels into 

orthogonal flat sub-channels. Comparisons between LTE-R and GSM-R can be found, proving that LTE-

R indeed provides enhanced performance and user experience. LTE-R has advanced capabilities for 

railway services such as video monitoring of critical regions (tunnels, bridges) and multimedia 

dispatching (He et al., 2016). Along with this, LTE-R advances legacy railway services such as eMLPP, 

VGCS, and VBS, ensuring backward compatibility via its Evolved Packet Core (EPC), enabling smooth 

migration to the newer system. 

However useful LTE-A is, there are certain services where it falls short. One of the essential services 

for autonomous train operations is pervasive real-time video surveillance, but an LTE-A network does 

not have the bandwidth to support it. Additionally, longitudinal monitoring of railway assets through the 

Internet of Things (RIoT) may also place high requirements on connectivity, coverage, and energy 

consumption, where LTE-A falls short. Therefore, there is a need for 5G integration into T2I 

communications.   

5 G-R is a standard 5G network specialized for railways and is anticipated to provide ultra-low 

latency of 1-5 ms alongside high peak data rates reaching up to 1 Gb/s. 5G systems are projected to offer 

1000 times an increase in system capacity, 10 times better spectral efficiency, and 25 times higher 

average cell throughput compared to LTE systems. While LTE has some limitations, the new 5G network 

is backward compatible, meaning that it is more efficient at supporting existing railway services and 

also able to introduce new features. Massive MIMO is one challenger enabling this innovation, 

increasing spatial resolution, data throughput, and energy efficiency (James et al., 2025; El-Saadawi et 

al., 2024). Users with access to high-speed connections are aided through the low-level MAC 

architecture of the joint beamforming cloud processor (Liu et al., 2013). 

Aside from incorporating MIMO, 5G may use Filter-Bank Multicarrier (FBMC) modulation instead 

of OFDM. FBMC helps accommodate band gaps, making it ideal for data-centric services (Winter et al., 

2009). This also means 5 G-R will be able to provide real-time monitoring, multimedia services, and 

large-scale IoT-enabling infrastructures, which will facilitate predictive maintenance and autonomous 

driving.  

In addition to cellular systems, the possibility of using IEEE 802.11-based WiFi in train environments 

has also been evaluated. The University of Nebraska conducted studies, sponsored by the Federal 

Railroad Administration (FRA), which showed that WiFi 802.11a/b/g could sustain mobile train 

communication with appropriate coverage. Further work by SNCF and Orange Labs in France proved 

that over a 13 km track segment, 802.11b/g can be used, and later tests achieved tens of Mbps through 

802.11n. More recently, ACKSYS released a rugged AP system supporting 802.11ac with over 900 Mbps 

per stream. This makes it possible to set up wireless trackside backbones. Future 802.11ax WiFi systems 
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will increase the throughput eight times compared to the previous version because of the cost-efficient 

real-time T2I communication for passengers, crew, and maintenance staff. 

Efficient resource management continues to be challenging because of overlap, bandwidth 

contention, and unpredictable usage behaviors. Cognitive Radio (CR) resolves this problem dynamically 

with real-time spectrum sensing, aggregation, and adaptive replanning. Since railway environments are 

more systemic and predictable, CR can keep track of wireless conditions and optimize frequency 

selection and transmission settings during the train's course. 

Optical Wireless Communication technology, or Free Space Optics, is a new field worth exploring. 

Research carried out in Japan and the UK under the umbrella of laser tracking systems showed OWC 

potential with a throughput of up to 400 Mbps. OWC also has immunity to electromagnetic interference 

and abundant unlicensed bandwidth. For this reason, it is an excellent candidate for T2I links. 

In remote or infrastructure-light areas, satellite remains a valued alternative. GEO satellites have 

broad coverage but suffer from high latency (>250 ms) and signal degradation owing to terrain and 

weather conditions. However, Ka-band satellites are said to have greater capacity at a better cost. Thus, 

satellites are considered add-ons for earthbound T2I systems. LTE-R and 5G-R are expected to become 

the backbone of future T2I systems, while WiFi, CR, OWC, and satellites will augment T2I depending 

on the operational scenario and context in which they are used.   

B. T2T Direct Communication Systems   

 

Figure 5: T2T Communication Systems 

T2T communication will serve when T2I connectivity becomes dysfunctional. It allows communication 

between trains via onboard equipment even where non-sightline (NLOS) conditions apply. Therefore, 

some atmospheric bands should have deep diffraction characteristic potential. Increasing train speed and 

traffic density will demand higher transmission rates and delay tolerance for T2T systems, explaining 

why these systems are becoming more stringent.   

5G cellular networks have a new two-layer architecture of microcell and device layer. The device 

layer consists of D2D-capable subsystems that permit communication between units without network 

reliance. Thanks to 5G’s flexible spectrum, T2T communication becomes simplistic because of its low 

latency, ultra-reliable high-performance metrics, and throughput. Communication needs these attributes 

to be efficient. 
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Figure 5 shows a T2T scenario in 5 G-R systems. In the case of infrastructure failure, T2T emergency 

D2D networks can be quickly established. Trains on the same track, such as Train 1 and Train 2, 

communicate directly, while cross-track trains, such as Train 1 and Train 4, may serve as relays to 

increase the communication distance.   

C. Intra-Carriage Communication Systems   

During high-speed train journeys, passengers often need continuous Internet connectivity. However, 

mobile Internet delivery is problematic due to the high attenuation of carriage materials, frequent 

handovers, and high Doppler shifts. Even LTE-R cannot completely support intra-carriage Internet 

access because of spectral limitations.   

The most efficient solution is to install wireless LANs (e.g., Wi-Fi) inside the carriages. These APs 

are connected to external antennas that interface with trackside infrastructure. Research also focuses on 

high-frequency standards such as IEEE 802.11ad/WiGig (60 GHz) and optical technologies like Li-Fi. 

Preliminary studies into the design of massive MIMO systems for intra-carriage applications offered 

promising access strategies and designs for maintaining constant connection. 

5 Challenges of 5 G-R 

The emergence of 5 G-R is expected to strengthen mobile communication systems for railways. 

Nonetheless, being an underdeveloped area of research, 5 G-R has many overarching issues to contend 

with, especially problems related to the characteristic propagation issues and channel modeling within 

different railway contexts. These issues are elucidated below. 

1. Network Coverage Along Railway Tracks 

Perhaps one of the more frontier issues facing 5 G-R is the uninterrupted coverage of the network along 

the expansive stretches of railway lines. 5G as a heterogeneous network facilitates spectrum access using 

high and low-frequency bands. Thus, enabling the 5 G-R deployment over multiple frequency ranges is 

feasible. For example, mid-quality low-band access could serve as an access layer, such as the 450–470 

MHz spectrum proposed for use by next-generation railway communications in China. The underutilized 

spectrum between 6 GHz and 100 GHz can also support low-cost, high-data-rate transmission. However, 

realizing any access to the entire spectrum is associated with various challenges, like accurate channel 

measurement and modeling, single-point access mergers for low/high-frequency bands, and the intricate 

design of RF components. 

2. Propagation Characteristics in T2T Communication  

The 5 G-based train-to-train (T2T) networks have distinct features, T2T propagation characteristics, and 

channel models based on the operational environment. Sustained distance communication links are 

highly susceptible to environmental fluctuations, hostile weather conditions, and extensive external 

system interference. Developing reliable and all-encompassing channel models continues to be a 

significant challenge. Effective disruption mitigation at multiple levels of T2T links is necessary to avoid 

interference from different T2T links. Furthermore, T2T communication faces severe regulatory issues, 

which make security critical. Research done on M2M communication security, such as trusted 

environment-based connections and secrecy-based access control methods, may offer strategies that can 

be built upon to resolve these issues.  
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3. Synchronization in C/U-Plane Decoupled Architectures 

In the C/U-plane decoupled architecture used in 5 G-R, the control plane (C-plane) and user plane (U-

plane) run on distinct physical nodes. This division creates problems for the alignment of user data and 

control information. In high mobility cases, trains move into overlapping registration areas at such a 

high speed that the handover process does not finish in time, leading to service disruptions. Providing 

solutions to the problem of soft and rapid handovers is especially attractive to researchers. New 

approaches concerning staggered handovers in C/U-plane architecture have been investigated recently, 

offering new possibilities for overcoming these challenges. 

4. Massive MIMO Under High Mobility 

New lines of research on massive multiple-input, multiple-output (MIMO) systems focus on under-

studied areas, such as channel conditions with mobility. Significantly, few jobs have addressed the 

challenges of high mobility performing massive MIMOs. For example, to facilitate 5 G-R system 

deployment, specific propagation models and channel attributes relative to the high mobility (T2I) Train-

To-Infrastructure communication need to be developed. Furthermore, Internet access via Intra-Carriage 

broadband in trains necessitates these models. Additionally, the infrastructure soars and passenger ovate 

in train cars dictate shadow fading. This has a substantial impact on the deployment of array antennas. 

Advanced design problems arise from these facts with optimal counts, shapes, and orientations for 

antennas whose spatial and loading scenarios are highly variable. 

5. Coexistence with Public Networks in Stations 

At railway stations, 5 G-R must interact with public mobile networks. While 5 G-R caters to mission-

critical railway communication needs, most networks are readily available and employed to surf the web 

for leisure activities by passengers. A fundamental problem is preventing adjacent channel interference 

between these systems. Another problem is the spatial design of stationary structures. Semi-closed 

spaces that contain high user density and are complex in architecture pose a distinct challenge to the 

performance of massive MIMO. Therefore, the development of targeted massive MIMO antenna arrays 

for railway stations is a compelling area of research. 

6 Conclusion 

This work analyzes the anticipated growth in demand for railway services and discusses the prospects 

of 5 G-R for better mobile communication systems in high-speed railways (HSRs). The first generation 

standard, the Global System for Mobile Communications-Railway (GSM-R), which is used today, is 

already outdated with modern rotary train operations and services. Although LTE-R is an improvement 

and does offer more services when compared to GSM-R, it still does not support forthcoming 

applications like autonomous train operation, RIoT (Railway Internet of Things) with massive 

connectivity, and high-speed internet access for the traveling populace. 5 G-R is projected to offer a 

radical shift in communication capabilities in overcoming these restrictions. These advanced railway 

applications with stringent requirements, such as ultra-reliable, low-latency, and high-capacity 

communication, are possible through 5 G-R and beyond what LTE-R can support. This extends to 

advanced train-to-infrastructure (T2I) and train-to-train (T2T) communications, intra-carriage, and intra-

station communication networks working under a single heterogeneous umbrella.  

Whether it is a slow transition through GSM-R to LTE-R and then 5 G-R, or 5 G-R is implemented 

directly, the progress of the 5G technologies, their commercial feasibility, and the policies set by 
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governing bodies will play crucial roles. This paper has analyzed the significant challenges regarding 5 

G-R deployment while equally highlighting the opportunities. These challenges include network 

coverage, high mobility channel modeling, synchronization issues in C/U-plane decoupled architectures, 

massive MIMO deployment, and coexistence with public networks. Solving these issues will be essential 

for leveraging the full capabilities of 5 G-R in future railway communication systems. 
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