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Abstract 

The importance of the core internet infrastructure’s scalability, resilience, and adaptability has 

grown tremendously due to shifting traffic patterns, diverse network requirements, increasing 

security concerns, and dynamic flow of data. Although traditional routing techniques are quite 

effective and proven robust over time, they do not adaptively respond to real-time traffic changes 

and state of the network. In this paper we present ASDN-ARA (Adaptive Software-Defined 

Networking-based Routing Architecture), a new model aimed at improving responsiveness 

alongside performance with regard to core routing by using SDN programmability. ASDN-ARA 

presents a new approach to adaptive routing with its multi-layered architecture composed of 

telemetry streams in real time, intent-driven policy engines, as well as modules of traffic engineering 

which are aware of network topologies. The architecture shifts its control over the decision layer 

based on congestion per link and latency thresholds, route flapping detection, as well as application-

level QoS metrics. The ASDN-ARA controller is built around a hybrid optimization algorithm that 

employs Reinforcement Learning (RL) combined with heuristic path scoring to find optimal 

forwarding paths between transit AS networks. Simulation and emulation tests performed on GNS3-

based testbeds show core findings that these proposed mechanisms can achieve up to 28% reduction 
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in average end-to-end latency while increasing link utilization balance by 35%. Furthermore ASDN-

ARA outperformed conventional OSPF and BGP based routing schemes in lowering convergence 

time during link failures. The system shows compliance with policies in multi-domain environments 

utilizing segment routing extensions. In addition, ASDN-ARA maintains integration compatibility 

with legacy control planes through an adaptive translation module, which allows for progressive 

implementation within the frameworks of pre-existing ISP infrastructures. The introduced adaptive 

routing model enhances the intelligent core routing paradigm by allowing greater autonomy in 

policy adherence, automation as well as latency-sensitive data packet transmission across extensive 

networks. 

Keywords: Adaptive Routing, Software-Defined Networking (SDN), Core Internet Infrastructure, 

ASDN-ARA, Network Telemetry, Reinforcement Learning, Segment Routing, ISP Networks, 

Dynamic Path Optimization. 

1 Introduction 

A. Overview of the Problem 

The Internet routing system relies on the Border Gateway Protocol (BGP) and Open Shortest Path First 

(OSPF) protocol, which work in a static or semi-static manner. These protocols have withstood the test 

of time over decades, but they are fundamentally reactive, path-static in nature, and devoid of real-time 

situational awareness of the network. In today’s core networks—high speed backbone infrastructures—

fluctuating bandwidth demands impose even more complexity considering multi-domain policy 

enforcement along with growing dominance of latency-sensitive applications like virtual reality, 

autonomous systems, real-time analytics etc., conventional routing’s rigidity results in unresponsive 

routing to dynamic shifts in topology and traffic resulting in suboptimal dense-path congested routing 

alongside sluggish failure recovery convergence (Jain et al., 2013; Usman et al., 2019).  

In addition, the expected application-level advanced telemetry and its associated quality-of-service 

(QoS) metrics are not available because current routing protocols lack a unique centralized global sight 

of the whole network (Mayilsamy & Rangasamy, 2021). These expose severe underperformance 

coupled with acute shortages such as heavily strained link(Pillai & Panigrahi, 2024) utilization due to 

pervasively enduring scourges like route hijacking during turbulent periods of BGP instability and surge 

without mercy (Labovitz et al., 2010). Proactive Internet core design requires responsive intelligent 

structures that can withstand systematic changes without violent fractures while upholding designed 

responsiveness properties. 

B. Emergence of ASDN and Its Potential 

The SDN (Software Defined Networking) separates the control plane from the data plan, allowing for 

centralized programming concerning routing decisions (Ekambaram & Tripathi, 2025). The more 

advanced version is called Adaptive SDN, or ASDN. ASDN adapts to changes with adaptive network 

policies and paths through telemetry feedback, intent-driven programming, and traffic analytics 

(McKeown et al., 2008), unlike static configurations. This allows multi-AS (Autonomous System) 

environments to proactively avoid congestion while optimizing clients in real-time according to SLAs 

(service-level agreements). 
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C. Proposed Model: ASDN-ARA 

This paper describes a new architecture called ASDN-ARA (Adaptive Software-Defined Networking 

based Routing Architecture). It is made up of four functional levels:   

The ASDN-ARA model achieves smarter and adaptive intelligent routing by leveraging specialized 

structures to operate through the internet backbone. The first layer is the Telemetry Acquisition Layer 

which focuses on acquiring real-time network link state data such as latency, jitter, and congestion levels. 

This is achieved using advanced flow monitoring systems alongside telemetry in-band systems capable 

of delivering continuous feedback pertaining to network conditions. Above this layer, the Intelligent 

Control Layer features centralized ASDN controllers containing hybrid path selection engines. These 

engines utilize RL (Reinforcement Learning) algorithms combined with heuristic methods to 

dynamically rank/select routing paths. Furthermore, it ensures that optimal performance would not be 

the only factor in routing decisions but topology adaptability would also be maximized. The last part, 

Policy and Intent Translation Layer have let’s assume two interrelated functions.  The first of which is 

translating company grade goals into network actions for work to be done under the governance of 

operations control on a network level, thus performing Business Process Management (BPM) system). 

It transforms high-level intents issued from organizations such as “enhance VoIP traffic while 

deprioritize file transfers” into low-level rules within intent-based networking frameworks storable as 

rulish reprisals (Akash et al. 2022).   

To recap previous discussions, policies assist in limiting the enforcement routing behaviors to service 

level agreements (SLAs) boundaries defined by the control layer). Also, the Forwarding and Feedback 

Layer which comprises data programmable Open Flow switches and Segment Routing capable routers 

which function as the FBL provide bordered SLA feedback plans additionally performs policy bounded 

routing provided predefined metrics governing operational outcomes gathered during real time. 

Reinforcing these forwarding rules aids fixing real-time performance metric compilation alongside 

closed ASDN-ARA loop systems enabling smart adaptation live networks within closed-loop adaptive 

architectural frameworks. 

D. Working Principle 

Closed-loop adaptive routing runs the show for ASDN-ARA, sort of like the steering wheel that never 

stops turning. The system tracks everything. Every cable, switch, and packet chimes in with a telemetry 

status report. In the blink of an eye the ASDN controller sketches a fresh routing map, tweaking paths 

to match whatever rules are in play, from the lightest-used links to the strictest performance quotas. 

Routes are updated dynamically within the underlying infrastructure using flow tables which are 

agnostic of breadth protocols. This enables prompt responses to failures, congestion, or SLA breaches. 

For instance, should a certain core link exhibit increasing jitter or congestion, the ASDN controller will 

automatically reroute real-time video traffic over other paths with lower latency without needing to 

intervene manually. In addition, it enforces limits which would prevent corporate traffic from PEA King 

during commercially shared backbones rush times (Figure 1). 
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Figure 1: Working Principle of the ASDN-ARA Model Showing Closed-Loop Adaptive Routing 

Operations 

E. Contribution and Novelty 

The invention ASDN-ARA stands out due to its hybrid intelligence-driven path computation engine, 

scalable telemetry ingestion, and routing enforcement that considers policies at the core layer of the 

Internet. ASDN-ARA also has faster disruption convergence compared to existing centralized routing 

systems along with improved load balancing and inter-AS programmable coordination with minimal 

BGP disruption. The outline for the remaining sections of the paper is as follows. A survey on adaptive 

routing, SDN-based network architectures, and core infrastructure applications of reinforcement 

learning is presented in II. Section III dives into the nuts and bolts of the ASDN-ARA setup. Toward 

the bottom of the page, you will find charts on data swings, decision-making logic, and the clever route-

tweaking tricks the system uses to keep packets moving. In IV, read why the SELAB testbed-that’s 

System Evaluation Lab-received a high-five on speed dial. The mini-movie of flashing lights and 

numbers listed every dial and knob that showed whether the system was inside the red line or out. V 

then pours simulation snapshots side-by-side with the pre-set gold stars for comparison. The write-up 

even names a few heavy-hitter protocols-yes, SDN-ARA made the cut-and lines up scoreboards on lag 

time, bandwidth cost, and rule-following coolness.  When we reach VI, a tall stack of worries stares 

back from the page. Things like shaky links between old systems, security soft spots, and entirely blank 

zones that hackers might stamp their passports into get noted with a loud underline. The authors close 

with a last reminder that every clever shield has a seam begging to be sewn up. 

2 Related Work 

A. Adaptive Routing in Core Networks 

As networks grow, plain old static routing and even slick systems like OSPF and BGP feel a bit stiff. 

Researchers keep tinkering with adaptive routing to pump some life into those protocols. A bunch of 

studies show that tweaking link-state info on the fly, tossing in feedback loops, and picking paths based 

on real-time congestion can make the whole setup bounce back faster when the topology shifts or a link 

suddenly drops out (Apostolopoulos et al., 1999). Although these approaches provided local 

improvements, their scalability was a challenge for backbone and inter-domain routing. Solutions such 

as Cisco’s Performance Routing (PfR) and MPLS Traffic Engineering (MPLS-TE) provided policy-

based path adaptivity using RSVP-TE reservations, but their static configuration philosophy suffered 
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responsiveness in real-time adaption—making them unsuitable in real-time scenarios (Rubio et 

al.,2017). More recently, some researchers have attempted real-time telemetry-driven adaptive routing 

with telemetry data streams and programmable flow-table switches to enhance accuracy in flow 

redirection (Sha et al., 2024; Aramide, 2025). However, most of these systems lack awareness of the 

wide area optimization global state which led to slow convergence during adaptive shifting (Majdoub et 

al., 2020). 

B. Software-Defined Networking (SDN) Architectures 

SDN allows the separation of control and data planes, which provides centralized control logic, 

programmable policies, and visibility over the entire network. Open Flow (McKeown et al., 2008), 

ONOS (Kim et al., 2016), and Google’s B4 WAN (Jain et al., 2013) are examples of SDN architectures 

that have proven successful in enterprise and hyperscale traffic management. In the case of core internet 

infrastructure, SDNs were proposed for automated inter-domain routing, granular QoS enforcement, and 

on-demand slicing of network resources in real time (Tootoonchian & Ganjali, 2010; Dargahi et al., 

2016). Research in (Bera et al., 2017; Feamster et al., 2014) illustrates how SDN-based controllers 

outperform traditional controllers with handling link-state updates or reacting to congestion scenarios 

(Gupta et al., 2016). 

Concerns such as controller location, delay overheads, trust boundaries between AS administrative 

domains, and controller fault tolerance raise issues when deploying SDN at ISP and inter-AS levels both 

Trust domains and security boundaries (Pragadeswaran et al, 2024; Sharma & Desai, 2024). Integrating 

legacy infrastructures into newly designed systems is also a challenging task when only partial 

deployment situations are considered. 

C. Reinforcement Learning for Routing Optimization 

Reinforcement Learning (RL) has proven to be effective for making routing choices, particularly in 

networks where situations are volatile and circumstances change dynamically. Q-routing, Deep-Q-

Networks (DQN) (Boyan, 1994), and models based on Policy Gradient methods facilitate learning 

optimal routing through stepwise interactions, allowing agents to improve iteratively (Xu et al., 2018). 

These systems have been shown to outperform congestion-aware, link-failure-aware, and traffic demand 

shifts adaptability compared to other rule-based systems (Mao et al., 2016; Stampa et al., 2017). Works 

like DRL-R (Heller et al., 2013) and NeuroRoute (Amin et al., 2021) have emphasized RL’s 

effectiveness towards flow-level optimization within both simulated environments and real-world 

topologies. However, issues like model convergence time, computational cost concerning cycle duration 

benchmarks in production-scale networks, instability of rewards, difficulty in maintaining the balance 

between exploration and exploitation in real-time responsiveness (Tedjopurnomo et al., 2020; Grover et 

al., 2015) pose obstacles. 

D. Integration of SDN and AI in Multi-Domain Environments 

The latest innovations combine SDN's programmability with AI's spatial reasoning capabilities, 

producing policy-aware routing systems that adapt to frameworks. Through neural network-assisted 

forecasting, Gebreyesus initiative managed to optimize backbone traffic in WANs, leading to 

noteworthy efficiency improvements (Gebreyesus et al., 2023). Other works examined federated clusters 

of SDN controllers that operate under the limits of an administrative domain but share path selection 

learning parameters with privacy-preserving techniques for coordinated decisions across borders 

(Thottan et al., 2019; Hadi et al., 2018). Proactive SLA compliant actions such as rerouting are enabled 
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through the application of RL agents within SDN controllers as proposed by iNetOM (Guo & Yuan, 

2021) and SAPIENS. These architectures operate across heterogeneous domains, leveraging cross-

domain optimization resulting in intent-driven policy enforcement. These findings motivate towards 

ASDN-ARA, a hybrid architecture where adaptive core Internet routing is achieved through RL-based 

decision making integrated with SDNs' centralized control. 

3 Design and Operational Logic of the ASDN-ARA Model 

A. Architectural Design Overview 

The outlined ASDN-ARA (Adaptive Software-Defined Networking–based Routing Architecture) model 

incorporates SDN concepts and integrates them with AI-driven decision-making processes to form a 

closed-loop routing system. Its functioning encompasses four fundamental layers: 

1. Telemetry Acquisition Layer: Captures real-time network parameters such as link delay Dij, 

bandwidth Bij, and jitter Jij for each link i→j. 

2. Intelligent Control Layer: Implements a controller with a hybrid path selection engine 

combining Reinforcement Learning (RL) and heuristic scoring. It uses observed states to decide 

the best routing paths under multiple constraints. 

3. Policy & Intent Translation Layer: Converts abstract policy rules (e.g., "prioritize low-latency 

paths for VoIP") into flow-level decisions compatible with the controller. 

4. Forwarding and Feedback Layer: Enforces routing via SDN-enabled devices (e.g., Open 

Flow switches) and provides telemetry feedback to the controller, enabling real-time adaptation. 

B. ASDN-ARA Routing Algorithm 

Input: 

• Network graph (nodes and links) 

• Real-time link data (like delay, jitter) 

• Routing rules or policies (intents) 

Output: 

• Best path for each data flow (R*) 

Steps: 

1. Start the SDN Controller. 

2. Collect current network information (like delays, bandwidth usage) from all links. 

3. Load routing policies (e.g., prefer low-latency, avoid overloaded links). 

4. For each data flow in the network: 

a. Identify the source and destination of the flow. 

b. Find multiple possible paths between them (e.g., 3 shortest paths). 

c. For each path: 

  i. Give it a score based on network condition (using Reinforcement Learning). 
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  ii. Apply penalties if the path breaks any policy rule. 

d. Select the path with the highest score. 

e. Install this path into the network (send rule to SDN controller). 

5. Keep checking the network at regular intervals: 

a. Wait for some time. 

b. Update the network information. 

c. If any flow is violating service rules (like high delay), repeat Step 4 for that flow. 

6. End 

 

Figure 2: Flow Diagram of ASDN – ARA Routing Algorithm 

C. Mathematical Model 

Let the network be modelled as a directed graph G 
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• E: set of directed links (i,j)∈E(i, j) \in E(i,j)∈E 

Let: 

• Dij(t): delay on link (i,j) at time t 

• Jij(t): jitter on link (i,j) at time t 

• Bij(t): available bandwidth on link (i,j) at time t 

Each candidate path p from source to destination is evaluated using a composite utility function: 

U(p) = ∑ ⌊𝑤1  .
1

𝐷𝐼𝐽(𝑡)
+ 𝑤2  .

𝐵𝑖𝑗(𝑡)

𝐷𝐼𝐽(𝑡)
−  𝑤3  .

𝐽𝑖𝑗(𝑡)

𝑗𝑚𝑎𝑥
 ⌋(𝑖,𝑗)∈𝑝                                                  (1) 

Where: 

• w1,w2,w3 are weighting factors defined based on intent policies 

• Bmax and Jmax are normalization constants 

The optimal path is chosen as: 

p ∗= arg 𝑚𝑎𝑥𝑝∈𝑃𝑠𝑟𝑐,𝑑𝑠𝑡   𝑈(𝑝)                                                                                                  (2) 

The controller selects p∗ and installs it via SDN flow rules. If telemetry indicates SLA degradation 

(e.g., latency > threshold), re-optimization is triggered (Figure 2). 

4 Results and Discussion  

A. Experimental Setup 

The proposed ASDN-ARA model's effectiveness was compared with OSPF and BGP in a simulated 

ISP-level topology within GNS3 and Mininet. We injected traffic, simulating real world scenarios as 

well as link failures and SLA-bound flows. The following four quantitative models were analysed 

regarding optimization. 

B. Performance Metrics and Optimization Formulas 

1) End-to-End Latency (Lavg) 

Latency was measured for each path p as the sum of delays across all hops: 

𝐿𝑎𝑣𝑔 (𝑝) =  ∑ 𝐷𝐼𝐽(𝑖,𝑗)∈𝑝                                                                                               (3) 

Where: 

• Dij: Delay on link between node i and j (ms) 

The objective in ASDN-ARA was to minimize Lavg for latency-sensitive flows. Results showed an 

average 28–35% reduction in latency compared to BGP and OSPF. 

Traffic Scenario OSPF (ms) BGP (ms) ASDN-ARA (ms) 

Light Load 18.4 20.1 15.7 

Medium Load 30.8 32.6 22.4 

Heavy Load 45.1 48.2 31.7 
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Figure 3: Comparison of Average Latency Across ASDN-ARA, OSPF, and BGP Protocols Under 

Varying Traffic Conditions 

As shown in this chart, ASDN-ARA continuously beats traditional routing protocols OSPF and BGP 

with regard to reducing latency. It shows visibly how much latency is saved for varying network loads, 

with the shortest bars reflecting ASDN-ARA's superiority (Figure 3). 

2) Link Utilization Balance (Uvar) 

To evaluate network-wide link utilization fairness, the variance of link utilization was computed: 

𝑈𝑣𝑎𝑟 =  
1

|𝐸|
 ∑ (𝐵𝑢𝑠𝑒𝑑,𝑖,𝑗|𝐵𝐵𝑇𝑜𝑡𝑎𝑙,𝑖,𝑗

− 𝑈′)(𝐼.𝐽)∈𝐸
2                                                     (4) 

Where: 

• Bused,ij: Bandwidth consumed on link (i,j) 

• Btotal,ij: Total capacity of link (i,j) 

• Uˉ: Average link utilization across all links 

Protocol Link Utilization Variance (U_var) 

OSPF 0.038 

BGP 0.045 

ASDN-ARA 0.025 
 

ASDN-ARA reduced Uvar by over 35%, showing more balanced load distribution due to its dynamic 

rerouting engine. 
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Figure 4: Comparison of Link Utilization Fairness Among Routing Protocols Based on Variance in 

Utilization 

This chart illustrates the effectiveness of each protocol in balancing the traffic load. ASDN-ARA has 

a lower variance where its bar or line point is which confirms how well traffic is evenly distributed 

across links of the network confirming its superiority (Figure 4). 

3) Routing Convergence Time (Tconv) 

Convergence time is defined as the time between failure detection and the successful installation of 

updated forwarding rules: 

𝑇𝑐𝑜𝑛𝑣 =  𝑡𝑠𝑡𝑎𝑏𝑙𝑒 − 𝑡𝐹𝑎𝑖𝑙𝑢𝑟𝑒                                                                                                       (5) 

Where: 

• T failure: Time when the failure is detected 

• T stable: Time when the last affected route is updated and traffic stabilizes 

ASDN-ARA reduced convergence time drastically due to its centralized SDN control logic: 

Event OSPF (s) BGP (s) ASDN-ARA (s) 
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Figure 5: Time Taken by ASDN-ARA, OSPF, and BGP to Restore Routing After Link Failures 

This pinpoint graph demonstrates the fast-converging capability ASDN-ARA has concerning failure 

recovering issues. Rising ROC indeed portrays that ASDN-ARA’s completion stabilization is below 4 

seconds while OSPF and BGP takes significantly longer (Figure 5). 

4) Policy Compliance Rate (PCR) 

Policy compliance was quantified as the ratio of flows adhering to their SLA-based routing 

requirements: 
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 𝒙 𝟏𝟎𝟎                                                                                                                 (6) 
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Figure 6: Percentage of Traffic Flows that Complied with Policy Rules Under Each Protocol 

The graphical representation vividly depicts ASDN-ARA's unparalleled prowess in implementing 

SLA-driven intent-based routing within the provided constraints. It reaches a compliance rate of almost 

94%, vastly outpacing traditional protocols. ASDN-ARA achieved 94% policy compliance with the 

implemented ASDN-ARA algorithm and traditional protocols sharply plummeted below 70% due to 

absence of enforcement (Figure 6). 

C. Optimized Convergence Graph 

This clearly illustrates that ASDN-ARA minimizes Tconv, 

To generate a Routing Convergence Time Graph comparing ASDN-ARA, OSPF, and BGP, showing 

how quickly each protocol stabilizes routing after a network failure. 
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This graph shows how fast different routing protocols—BGP, OSPF, and ASDN-ARA—recover and 

stabilize the network after a link failure. It plots Time After Failure (in seconds) on the X-axis and 

Percentage of Converged Routes (%) on the Y-axis (Figure 7). 

A simulated link failure is initiated at time zero. The graph illustrates the convergence process of 

route stabilization over time for all protocols. The BGP curve shows a gradual upward trend starting 

from 5 percent convergence at the 1-second mark and reaching 100 percent only at the twenty second 

mark. BGP has a reputation for being slow on the uptake whenever a link drops, and that sluggishness 

mostly comes from its old-school timer tricks and path-vector design. In practical terms, OSPF jumps 

to a sensible answer much faster-usually hitting a tidy 100 percent convergence between eight and ten 

seconds. The reason OSPF moves so quickly is its link-state strategy, which pretty much floods the 

neighborhood with updates and then runs Dijkstra on the fly. ASDN-ARA, though, blows both of them 

out of the water: it creeps up to about 95 percent convergence in just three seconds and tidies up the last 

few stragglers almost right after. What gives it that turbo boost is a feed-back loop wired directly to an 

SDN controller; when a failure pops up, reinforcement-learning smarts kick in, rewrite the rules, and 

steer the packets along fresh paths before anyone else even blinks. All of this shows up clearly on the 

chart, with ASDN-ARA's curve shooting upward while the older methods lumber along. The numbers 

matter because, for a carrier-core network, a delay measured in seconds isn't an inconvenience-it's lost 

packets, broken SLAs, or jitter that ruins VoIP and video in real time. 

D. Discussion 

After adding the new optimization models, ASDN-ARA jumps ahead of older routing tricks by a wide 

margin. By cutting delays, evening out link loads, speeding up failover, sticking to tight rules, and 

pulling off multipart returns all at once, it turns obvious headaches into footnotes on a data sheet. Picture 

a backbone that handles next-gen traffic without blinking. Shoving math-based utility functions into a 

feedback loop lets the network adjust on the fly, keeps service-level promises, and squeezes every bit of 

juice from its hardware. 

5 Deployment Considerations and Challenges 

A. Integration and Interoperability with Legacy Systems 

Deploying ASDN-ARA in the core Internet infrastructure comes with challenges, one of which is 

seamlessly integrating OSPF and BGP routed Internet. Backbone Border Routers are integrated using 

ASDN-ARA Machine Learning Adaptive Control Decision Systems because these devices use SDN 

controlled adaptive reinforcement-based learning to make decisions. Today’s backbone routers still 

depend on policy-based control planes which operate in a distributed manner. Implementing ASDN-

ARA in these systems would require mix-mode control frameworks where classical and software-

defined networks algorithm domains co-exist. SDN Controllers would have to be placed at peering or 

Metro Core Router Nodes and Domain level topology and intent information would need to be shared 

using route reflectors with BGP-LS, southbound APIs (Link State) and Open Flow or PCEP given 

precedence’s. Precise boundary control alongside protocol translation layers with higher-tiered logic 

planes will help maintain consistent routing across the borders without getting trapped into loops. 

B. Deployment and Scalability Challenges 

The large-scale deployment of ASDN-ARA incurs added operational burdens in terms of controller 

positioning, telemetry latency within the paths, and real-time telemetry data analysis. With global ISP 
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networks, centralized controllers become bottlenecks unless they are distributed or structured 

hierarchically. Moreover, training and updating production-grade reinforcement learning models in real-

time computing environments is unstable routing-dominated patching failsafe. To overcome these 

concerns, distributed RL agents with local policy caches and grouped controllers may be implemented. 

High frequency telemetry data collection […] from thousands of links mean that there needs to be some 

form of governance. Combined on each link using in-band streaming telemetry which incorporates 

Apache Kafka alongside Prometheus as well as data thinning pushes this systems limit. 

C. Security and Trust Implications 

ASDN-ARA introduces new threat vectors associated with centralized control, policy manipulation, and 

ML model poisoning. A compromised controller can affect the entire routing domain, making controller 

hardening and failover mechanisms critical. Additionally, attackers could exploit intent translation 

interfaces to install malicious policies or influence RL agents by injecting biased telemetry data. In this 

situation, the implementation of role-based access will be done through policy validation logic as well 

as anomaly detection modules within the control pane. Moreover, securing telemetry streams, auditable 

policy alterations, and controlled or sandboxed learning systems bolster the overall system security. 

Other potential add-ons include block chain logging for enhanced data traceability alongside federated 

learning which serves to restrict training data to specific domains per jurisdiction. 

6 Conclusion and Future Work 

This paper presented ASDN-ARA, which stands for an Adaptive and Intent-based Dynamic Routing 

Architecture and aims to improve the efficiency, responsiveness, and policy adherence of the core 

Internet infrastructure. ASDN-ARA’s use of software defined networking (SDN) reinforced learning 

together with intent-based policy translation routing provided remarkable results in comparison to 

traditional OSPF and BGP protocols. OSPF and BGP were shown to have worse results on key metrics 

such as end-to-end latency, link utilization balance, routing convergence speed, and compliance with 

policies. With hybrid control models in place allowing telemetry data collection in real time as well as 

closed loop feedback enabled the controller to dynamically select paths that routed best with 

organizational objectives providing path selection aligned with strategic goals. While promising such 

features brought issues related to scalability gaps alongside legacy system interface interoperability 

barrier while security hardening still needs attention assuming these tasks need primary focus if real 

world application is the goal paving adoption underground based ISP or enterprise networks. Further 

research aims towards improving fault tolerance by using a distribution across edge-based architectures. 

Integrating federated learning stronger privacy-preserving telematics can enhance the trust model 

together with support from multi-domain routing coordination backbone heterogeneous infrastructures 

will be vital adding true global adaptive-routing frameworks compliant policies changing patchwork 

countries. Routing adaptable globally across fragmented structures backbone unified 
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