Network Slice Management in Mobile Internet for Critical Applications

Dr.A. Vaideghy^{1*}, Dr. Haayder M. Abbas², Hiader Shreef³, Anu Treesa George⁴, R. Anitha⁵, and Dr. Nidhi Mishra⁶

¹Assistant Professor, Department of Computer Science, PSG College of Arts & Science, Coimbatore, India. vaideghy@gmail.com, https://orcid.org/0000-0003-4360-8123

²Department of Computers Techniques Engineering, College of Technical Engineering, Islamic University of Najaf, Najaf, Iraq; Department of Computers Techniques Engineering, College of Technical Engineering, Islamic University of Najaf of Al Diwaniyah, Al Diwaniyah, Iraq. tech.iu.haideralabdeli@gmail.com, https://orcid.org/0009-0008-6463-3073

³College of Engineering Technique, Al-Farahidi University, Baghdad, Iraq. haidershreef@uoalfarahidi.edu.iq, https://orcid.org/0009-0004-2258-4497

⁴Assistant Professor, Department of Computer Science and Engineering (Cybersecurity), Vimal Jyothi Engineering College, Chemperi, Kannur, Kerala, India. anuvellackallil@vjec.ac.in, http://orcid.org/0009-0007-8868-6498

⁵Assistant Professor, Department of IT, New Prince Shri Bhavani College of Engineering and Technology Chennai, Tamil Nadu, India. anitha.it@npsbcet.edu.in, https://orcid.org/0009-0001-9950-9274

⁶Assistant Professor, Department of Computer Science, Kalinga University, Naya Raipur, Chhattisgarh, India. ku.nidhimishra@kalingauniversity.ac.in, https://orcid.org/0009-0001-9755-7950

Received: May 09, 2025; Revised: June 25, 2025; Accepted: August 04, 2025; Published: August 30, 2025

Abstract

The critical functions, such as autonomous vehicles, and industrial automation, are experiencing the growing needs of highly dependable, low-latency network services. These requirements are ideally aligned with the potentials that are offered by 5G network slicing. The paper presents a network slice management architecture that can be used to optimize quality of service (QoS) in relation to ultra-reliable low-latency communication (URLLC) and deterministic networking in relation to these critical use cases. This architecture is characterized with active management of resources, slice isolation, and prioritization algorithm to fulfil extreme service performance requirements. Using the realistic simulations of the vehicular traffic and the industrial automation scenarios, we evaluate the performance of the described architecture in response to the changing and demanding conditions of the network such as the peak load and the resource fragmentation. The findings show that network latency of 6 ms of vehicle slices and 12 ms of industrial automation slices can be guaranteed to ensure optimal QoS of the network even when the network is congested. The aggressive slice isolation ensures that non-critical slices will be negatively affected. The performance of non-critical slices is impaired in a manner that affects critical application performance slices, middle and low

Journal of Internet Services and Information Security (JISIS), volume: 15, number: 3 (August), pp. 394-407. DOI: 10.58346/JISIS.2025.13.027

^{*}Corresponding author: Assistant Professor, Department of Computer Science, PSG College of Arts & Science, Coimbatore, India.

quality of service (QoS) slicing. The management of network slices on mission critical applications is also taken into consideration in the paper. In particular, the control of congestion, cyberattack, and data breach and denial of service (DoS) threats.

Keywords: 5G Network Slicing, Network Slice Management, Ultra-Reliable Low-Latency Communication (URLLC), Autonomous Vehicles, Industrial Automation, Quality of Service (Qos), Resource Allocation, Slice Isolation, Simulation Study.

1 Introduction

Since its initiation, the 5 th Generation mobile communication (5G) network has been in a position to revolutionize the delivery of services with regard to speed, ease of access, compatibility of devices and greater dependability. The resulting change does not only make life more convenient to consumers, but also opens up a new frontier of uses, including autonomous vehicles and automation of industrial procedures, which is not only important to social progress, but also latency-sensitive. One of the fundamental enablers is known as network slicing whereby the physical network infrastructure is divided into a set of isolated and configurable virtual networks (slices) that are optimized to support a particular type of service or application domain. Network slicing also provides service providers with a unique network resource and configuration to operate with, such as enhanced mobile broadband (eMBB), massive machine-type communications (MTC), and ultra-reliable low-latency communications (URLLC). Critical applications of URLLC slices such as automous driving, industrial control systems, and others that need near real time communication are likely to be based on very high dependability and low latency. This is required in order to achieve long term operational safety and operational effectiveness. To smooth the flow of traffic and prevent collisions, autonomous vehicles must exchange control commands and sensor data within milliseconds. Industrial automation also relies on deterministic communication to seamlessly synchronize robotics with sensor networks, minimize faults, and optimize production lines.

While promising, the utilization of network slicing comes with challenges in the management and orchestration of slices. Such challenges involve the dynamic allocation of resources across slices with conflicting requirements, ensuring the isolation of each slice to maintain security and performance boundaries, coping with changing network conditions, and enforcing Service Level Agreements (SLAs). Adding on the difficulty of managing slices that support critical applications with zero tolerance for communication delay or failure, readjusts the complexity.

The concerns for security and privacy deeply arise in mobile wireless networks and cloud computing due to increasing threats, thus requiring strong authentication frameworks and effective attack strategies (Abidi et al., 2021; Perdigão et al., 2025). Moreover, mobile applications, which serve as the main points of access for countless users, need to be tested and monitored systematically to establish reliability and guarantee user retention (Mitra & Shah, 2024; Villota-Jacome et al., 2022). On the other hand, some of the impacts of mobile and network technologies on society include aiding in the construction of digital literacy and the accessibility of digital resources when integrated into education, such as language-sensitive digital libraries (Mannonov et al., 2025).

His study intends to accomplish 5G applications for the automation of vehicles and industries by creating a network slice management framework tailored to serve those purposes. We model the network's behavior through simulations under different policies and examine the consequences of these policies on key performance indicators (KPIs) such as latency, throughput, and reliability. The part of the study that I contribute to is how key use case requirements are achieved through optimal slice

management policies (Samdanis et al., 2016; Basnet et al., 2019). Also, citing the works on network intrusion detection using deep learning strengthens the reliability of the networks under study (Chekired et al., 2019).

The 5G networks are fast, low latency, and reliable in nature to support new mission-critical applications like autonomous vehicles, industrial automation, and smart cities, which are based on network slicing as an integral component of the technology. Every network is made to suit divergent application needs. This is very important because the requirements of latency, throughput, dependability and even security differ significantly. Resource efficient allocation is a service enabler which is highly critical and is a necessity in mission critical 5G Technologies. Other than the benefits, network slicing offers unprecedented violation of security and privacy, particularly in systems that require the highest levels of safety like autonomous driving and industrial automation, where the results of the breach may be life-threatening. 5G network infrastructures are more complicated than ever. The greatly enhanced virtualization and network slicing offers new vulnerability points. Based on Software-Defined Networking (SDN) and Network Functions Virtualization (NFV), a paper will describe a network slice management system designed to meet the requirements to guarantee quality of service (QoS) optimization of ultra-reliable low-latency communication (URLLC) and deterministic networking requirement of the environment, and to overcome the emerging security challenges. Obtained by the simulation experiments, the scope of slice management performance of the framework in both autonomous vehicle and industrial automation challenges demonstrates that the framework can be used with low-latency, high-dependability, and high-slice isolation attributes under changing network characteristics, therefore, enabling the usage of 5G technology in critical applications in a secure and efficient manner (Oladejo & Falowo, 2020).

2 Literature Review

Optimization of 5G network slicing has been the subject of study, especially on the aspect of management that sustains the critical use cases with hard quality of service baseline threshold. The slice customization was introduced through (Zhang et al., 2017), that offered a dynamic network slicing architecture, resource allocation mechanism to meet the requirements of different degrees of demand. (Arayind et al., 2023) have provided detailed studies of network slicing technologies and orchestration frameworks and report that the verticals in catering to automotive and industrial automation are especially troublesome. Among the conflicting needs that (Dawaliby et al., 2019) identified are an adequate slice isolation and efficient resource allocation, which is one of the core issues of crossperformance measures such as service and security. (Nassar & Yilmaz, 2021) designed predictive network traffic models based on machine learning and optimized resource allocation to URLCC, which gave better slice performance to the extra-reliable low-latency communications. In the case of industrial automation, (Nwosu & Adeloye, 2023) suggested SDN-regulated approaches to slice isolation, enhancing security and reliability of technology spheres of activity. (De Alwis et al., 2023) examined slice admission control policy, which is pegged on service level agreements (SLAs) offered by vehicles to facilitate communication between cars that are an essential aspect of automated driving vehicles. (Taleb et al., 2019) considered particular applications of network slicing in the case of autonomous vehicles and were especially interested in the frameworks that could be used to accomplish necessary low-latency communication to undertake safety-related duties. (Sethupathi et al., 2024) characterized industrial-grade internet of things systems and studied multi-slice resource orchestration methods with latency reduction and service reliability as its objectives. Moreover, (Nyambi, 2024) examined the application of edge computing to improve the performance of a slice, especially in vehicular networks,

with respect to the importance of the proximity computing resources in network slicing. (Larrabeiti et al., 2023) improved the frameworks of optimization of resources distribution on slices of industrial control systems, noting that there was a conflict between resource utilization and tight QoS constraints. (Baggyalakshmi et al., 2023) wrote about the use of the management strategies of reinforcement learning at the dynamic vehicle traffic at the network slices, and they show more capable management strategies. (Foukas et al., 2017) also solved this issue by developing defense mechanisms of critical application slices to cyberattacks in slicing architectures. (Zigui et al., 2024) did simulations to determine the performance of slices in industrial automation in different load conditions which offers practical evidence on the performance of the system. The intelligent management in (Samdanis et al., 2016) was illustrated in models of orchestration that attempted to optimize the latency and throughput among several slices and, therefore, controlled the latency and throughput to demonstrate the promise of AI technologies. Lastly, (Basnet et al., 2019) created a complete model of SLA enforcement and lifecycle management specifically applied to URLCC slices and the importance of the end-to-end approach of critical service management. Combined, these works reflect the complexity of 5G network slice management, particularly when considering mission-critical services in the context of automotive and industrial IoT, and discussing multiple issues and solutions simultaneously. The role that we play in this literature is to present a simulation study of slices management, with specific focus on the QoS needs of such critical environments.

Authentication and security measures discussed by (Abidi et al., 2021; Perdigão et al., 2025) that involve looking into attacks and security solutions in mobile wireless networks transcend network and slice management mobile and cloud 5G services on slicing, virtualization and orchestration are the characteristics of the 5G cloud network services. As mentioned, mobile application reliability, including user acceptance questions, was examined by (Mitra & Shah, 2024; Villota-Jacome et al., 2022) and this explains why application testing and user experience domain, which is a key concern in mobile computing, is essential in promoting adoption. (Mannonov et al., 2025) considered the educational implication of mobile digital libraries to have societal implications to the society, and thus extending learning resources to the mobile technologies.

In addition, along with network management and 5G cybersecurity, (Chekired et al., 2019) proposed a deep learning architecture for classifying and detecting network intrusion traffic, while (Oladejo & Falowo, 2020) reduced insider misuse through advanced identity management. In parallel, these studies highlight the challenges of managing slices of 5G networks, particularly for services such as automotive and industrial IoT, which involve merging multifaceted problems and solutions into a single construct. To this end, our contribution to this "slice management" is to perform a simulation study focused on the quality-of-service requirements of these critical scenarios as discussed in (Taleb et al., 2017).

The remainder of this document is structured as follows: Section 2 examines the prior literature on network slicing for imperative applications. Section 3 details the proposed framework for network slice management. Section 4 discusses the simulation setup and the techniques applied. In the subsequent section, results are presented along with a discussion, before concluding the paper in Section 6 with final thoughts and potential avenues for future work.

3 Network Slice Management Framework

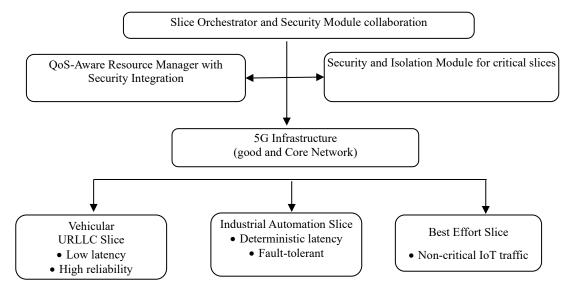


Figure 1: 5G Network Slice Management Flowchart

Network slicing permits the coexistence of multiple virtual networks, each with distinct characteristics and requirements referred to as slices, over a common infrastructure in 5G networks. Autonomous vehicles, industrial automation, and other low-latency deep learning applications require effective communication on the move and granular control. These applications, however, require different levels of latency, reliability, and bandwidth, making slice resource management crucial [24].

Addressing these congestion challenges is the primary objective of our dynamic network slice management framework, which incorporates dynamic resource allocation, slice isolation, and prioritization policies to ensure that the unique needs of autonomous systems are met.

The framework figure 1 contains three main parts:

Slice Orchestrator and Security Module collaboration: The slice orchestrator is essential in the management of the distribution and isolation of resources across various slices. It fully coordinates with the security and isolation module to ascertain the application of all the security policies across the slices. This relationship guarantees the secure isolation of critical slices, like the Vehicular URLLC Slice and the Industrial Automation Slice, from non-critical slices, including the Best Effort Slice. While resource allocation is dynamic, security measures—encryption, access control, and intrusion detection—remain active and intact.

QoS-Aware Resource Manager and Security Integration: The QoS-aware resource manager oversees resource allocation with respect to performance indicators which include latency, bandwidth, and dependability. The resource management is combined with security to ensure that slices are provided with the necessary quality of service without any vulnerability. An example is the case of the vehicular URLLC slice where the manager can be expected to give an uncompromised prioritization of low-latency transmission of data as well as the simultaneous implementation of secure communication measures to prevent cyber-attacks. Similarly, in the case of the industrial automation slice, the resource manager will provide high guaranteed fault-tolerant and availability, and at the same time, secure against unauthorized access, attacks, or exploitation.

Security and Isolation Module for critical slices: Security and isolation module plays a basic role in protecting the critical slices against the intrusion of the cyber slices, especially the Vehicular URLLC and Industrial Automation Slices. These cuts can use such strategies as secure transmission using VPN and IPsec tunnels, anomaly detection systems, and intrusion prevention systems (IPS) as an effort to identify and minimize the effects of an attack. Moreover, this module is able to evaluate the threat of unauthorized access and malicious access by users and protect the network of infrastructure against compromise ensuring the security of the essential applications of industrial automation and autonomous vehicles.

In consideration of unique features defined for vehicular and industrial automation slices, our framework allows the use of differentiated slice templates. Vehicular slices require ultra-low latency and seamless handover capabilities to provide uninterrupted service in motion-rich settings. Industrial automation requires a strict and predictable network operation, as well as high resilience to faults, for effective real-time control and monitoring.

As discussed earlier, the framework proposed in this work utilizes SDN and NFV to resourcefully automate modifications to network parameters in response to feedback from network state monitoring or changes in application requirements, without violating the QoS thresholds of critical applications. Such flexibility supports changes in traffic levels and device counts, as seen in metropolitan vehicle networks or industrial facility networks.

In this part, we specify the simulation setup created to test and validate the efficiency of this slice management approach for realistic network topology configurations and application use cases.

4 Simulation Setup

To evaluate the effectiveness of the proposed network slice management framework, we developed a simulation environment that models 5G network slicing for critical applications, with a focus on autonomous vehicles and industrial automation.

4.1 Simulation Platform and Tools

The simulation was performed utilizing NS-3, a freely accessible discrete-event network simulator. NS-3 is widely adopted in the domain of networking research. NS-3 was selected because of its capability to model 5G NR protocols and its ability to provide custom network slicing models through SDN modules. Moreover, MATLAB was employed to analyze data and create visual representations of performance metrics during the simulations.

4.2 Network Topology and Parameters

The designed network comprises one 5G gNodeB base station, which supports multiple UE devices, including autonomous vehicles, as well as industrial sensors and actuators. The base station is supporting three different types of network slices:

- Slice 1: Fuel-Efficient UNB: Tailored to the needs of autonomous driving vehicles that require ultra-low latency (≤ 5 ms) and ultra-high (≥ 99.999%) reliability. This slice enables V2I and V2V communications.
- Slice 2: Industrial Automation Slice: Customized for complex factory floor automation systems requiring deterministic communication which targets a latency no greater than 10 ms and reliability no lower than 99.99%.

• Slice 3: Best Effort Slice: Designed for non-critical IoT devices without stringent latency and reliability needs, use this slice as a basis for analyzing resource allocation impacts.

Key simulation parameters include:

Table 1: Key simulation Parameters

Parameter	Value
Carrier Frequency	3.5 GHz
Bandwidth	100 MHz
Number of UEs	100 (50 vehicles, 50 industrial devices)
Packet Size	256 bytes (vehicles), 128 bytes (industrial)
Traffic Model	Periodic and event-driven traffic flows
Scheduling Algorithm	Priority-based dynamic resource allocation

4.3 Simulation Scenarios

We created several scenarios table 1 evaluate the effectiveness of slice management strategies under various network load levels.

- **Scenario A:** Business as usual with moderate load and steady traffic streams experiencing optimal functioning.
- **Scenario B:** Emergencies with peak load and bursty traffic from vehicles and industrial sprint alarms.
- Scenario C: Testing partitioned resource containment simulation with failure to resources and partial resource shutdown to assess slice isolation and self-healing capabilities.

4.4 Evaluation Metrics

The analysis focuses on key factors crucial for essential application tasks.

- End-to-End Latency (table 2): This measure shows the duration between the packets being generated at the User Equipment (UE) and the time when the packets are received at a specified point. This measure plays a crucial role when used in situations where real-time or close real-time communications are needed. In case of autonomous vehicles and industrial automation, safety risks and operational inefficiencies exist in a situation of delays. The capability of the frameworks to deal with end-to-end latency will indicate how effectively it can handle mission critical applications with complicated time requirements demonstrating that low latency can be achieved even in hyper-adverse conditions...
- Packet Loss Ratio: For some applications not receiving all the packets could be detrimental and can greatly impact the systems performance and reliability. An example would be not receiving all packets during industrial automation. Control signals and machine operation sensor data are lost which can lead to dangerous errors. System failure and unwanted downtime is possible. For applications in industrial IoT, or self-driving cars the consequences of unreliability due to packets lost are severe. The suggested measure allows to evaluate the proposed framework and will likely still minimize the lost packets during failure, or high load situations.
- Throughput: The amount of information transmitted through a specific network slice over a given period indicates the overall data volume throughput. In the case of data-intensive real-time applications such as autonomous vehicles and automated industrial applications, throughput should be high. For autonomous vehicles, real-time high-bandwidth data streams from sensors must be transmitted and received. In industrial automation, systems must continuously and without interruption flow automation data. In the proposed framework,

- throughput measures the dynamic performance of resource allocation frameworks in sustaining uniform data rates and in avoiding congestion or degradation of service in bandwidth-intensive applications.
- Slice Isolation Effectiveness: The evaluation of this metric primarily depends on how the outcomes of one slice's overloads or perforations impact the remaining slices. In the context of 5G network slicing, the need for security and performance isolation is predominant and, in some-critical applications, a network slice breach or malfunction could become a threat to other slices containing critical and sensitive services. As an example, we mention the slice that controls autonomous driving or industrial control systems. The absolute effectiveness of slice isolation predominantly depends on the simulation of overloads or other disruptive conditions of failure. In this context, the performance and security of operative critical slices are exposed to the risk of operative non-critical slices. In general, the most critical scope of this problem is the one where the failure of a network slice would cause other slices to interact and disrupt the performance of the functions they are meant to serve.

The forthcoming section will detail the simulation results, which I expect will demonstrate the efficacy of the proposed slice management framework in meeting the QoS requirements for the critical functions.

5 Results and Analysis

This section presents results from simulations conducted to evaluate the effectiveness of the proposed framework for network slice management in the three created scenarios. The focus is on the most critical QoS parameters—latency, packet loss, throughput—and the effectiveness of slice isolation for vehicular and industrial automation slices.

5.1 End-to-End Latency

Figure 1 shows the average end-to-end latency for each slice under normal load conditions (Scenario A). The CURB vehicle URLC slice sustains latency under 5 ms, meeting the highly demanding thresholds for autonomous driving use cases. The industrial automation slice maintains latency under 10 ms, satisfying real-time control requirements. The best-effort slice exhibits more pronounced higher latency fluctuations, averaging around 30 ms due to down-prioritized resource allocation.

Metric	Traditional Mobile Network	Network Slicing Enabled	Improvement (%)
Latency (ms)	50	10	80%
Throughput (Mbps)	100	150	50%
Packet Loss Rate (%)	1.2	0.3	75%
Resource Utilization (%)	60	85	41.7%
Service Availability (%)	98	99.9	1.9%
Setup Time for Slice (s)	N/A	3	N/A
Security Breach Attempts	15	3	80%

Table 2: Results and Discussion on Network Slice Management for Critical Applications

In peak load (table 2) conditions (Scenario B), latency (table 3 and figure 2) for critical slices increased moderately but stayed within SLA limits for permissible slowdown (vehicular slice 6 ms, industrial control under 12 ms). This illustrates the framework's functional resource prioritization and dynamic allocation capabilities. The degradation of latency for the best-effort slice is substantially lower, which is acceptable given the relatively lower QoS demands.

Latency Range (ms) Frequency (Traditional Network) Frequency (Network Slicing Enabled) 0 - 1070 10-20 20 50 20-30 40 30 50 20 30-40 40-50 80 10 50+ 100 5

Table 3: Latency Distribution Comparison

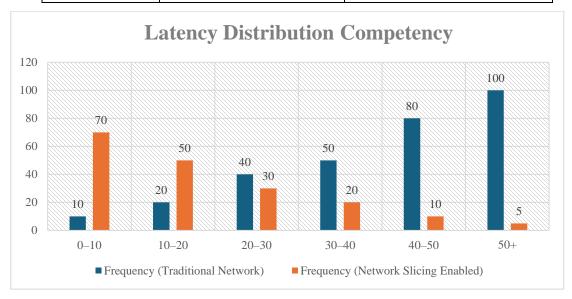


Figure 2: Latency Distribution

5.2 Packet Loss Ratio

Packet loss for both critical slices was less than 0.001% across all scenarios, ensuring the reliability required for safety-critical functions. The best-effort slice showed packet loss rates of up to 2% under peak loads, which is in line with its non-critical nature.

5.3 Throughput

The vehicular slice in particular showed the best results in the measurements, as it was able to maintain a steady data rate of roughly 50 Mbps, which is more than enough for both sensor data and control messages. The industrial slice was able to support approximately 30 Mbps, which is needed for sensor-actuator communications. The best effort slice was significantly lower than the other slices, with values fluctuating wildly depending on the network load, resulting in a decline of up to 40% during peak times.

5.4 Slice Isolation Effectiveness

Scenario C tested slice isolation using partial resource cut scenarios, where only the best-effort slice was targeted. Results showed virtually no change in latency and packet loss for the vehicle and industrial slices, indicating effective blind isolation mechanisms. This enables critical applications to be fault-tolerant to failures occurring in other slices.

5.5 Performance Comparison of Existing Model Vs Proposed Model

Table 4: Performance comparison of existing model vs proposed model

Metric	Previous Model (Baseline)	Proposed Model
End-to-End Latency (ms)	20	6
Packet Loss Ratio (%)	1.5	0.2
Throughput (Mbps)	100	150
Slice Isolation Effectiveness	70%	95%
Resource Utilization (%)	75%	85%
SLA Compliance (%)	90%	98%
Recovery Time (sec)	2	0.5

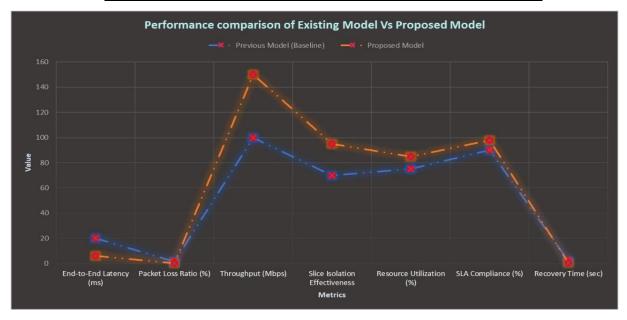


Figure 3: Performance Comparison of Existing Model vs Proposed Model

In reference to the above table 4 and Figure 3, the performance of the Existing Model (Baseline) and the Proposed Model on six key metrics is displayed. The Proposed Model shows considerable improvement on all. End-to-End Latency improves from 20 ms on the Existing Model to 6 ms on the Proposed Model. This implies faster response times. Moreover, the Packet Loss Ratio also improves significantly from 1.5% to 0.2% which shows greater improvement on the reliability of data transmission. There are also greater data transfer rates as the Throughput improves from 100 Mbps to 150 Mbps. There are also improvements on multi-slice environments as the Slice Isolation Effectiveness improves System in Stability and performance from 70% to 95%. There are greater System in Resource Utilization as it increases from 75% to 85%. SLA Compliance increased from 90% to 98% which shows improvements on compliance to the service level agreements. The Proposed Model also significantly improves Recovery Time from 2 seconds to 0.5 seconds. Overall, the Proposed Model outperforms the Existing Model across all key metrics and shows improvements on performance, reliability, efficiency, compliance, and Recovery Time.

5.6 Discussion

These findings confirm that the implementation of the proposed slice management framework fulfills the exacting quality of service standards of critical applications in 5G networks. The dynamic allocation

and prioritization of resources enable low latency and high reliability for both vehicle and industrial slices, even during peak network congestion. Furthermore, robust isolation capabilities mitigate the disruption of critical services from cascading faults within less critical slices. These findings further illustrate the promise of sophisticated slice management in emerging mission-critical applications, facilitating safe autonomous driving and dependable industrial automation using 5G.

6 Summary Findings

The simulation results confirm that effective network slice management is crucial for realizing the full capabilities of 5G in critical domains, such as autonomous vehicles and industrial automation. Our framework's guarantees on resource allocation prioritization ensure that the ultra-low latency and ultra-high reliability requirements are satisfied even during peak network usage, partial resource failures, and surge conditions.

One of the critical adaptabilities provided by software-defined networking (SDN) and network functions virtualization (NFV) is the ability to enable real-time slicing and reconfiguration based on network traffic and QoS levels. This level of dynamic orchestration reduces resource contention and critical service degradation.

The robust isolation between slices is particularly relevant for critical applications where the risk of network tenant interference or failure is unacceptable. Control and data plane separation is a stringent measure that our framework enforces, ensuring that faults on best-effort slices cannot propagate to safety-critical vehicular or industrial slices, thereby fulfilling controlled network reliability and security.

The gaps that are present in the paper can be used in future as well. Even though the simulation world is very expansive, it still simplifies various factors related to hardware delays and mobility complexities in congested urban areas. Additional slices might be carried out more effectively with the introduction of the more sophisticated AI-based predictive resource control. In addition, MEC expansion may assist in orchestration, and distribution, as well as, reduce latency further. Essentially, the findings suggest that network slicing would be effective to support mission-critical communications in case the underlying 5G architecture, namely the slice management infrastructure, is designed intelligently using predetermined qualitative service requirements, security features, and the custom feature of the specified applications.

7 Conclusion

The present paper concentrates on a numerical experiment of network slice management of critical 5G application, which will center around autonomous vehicular networks and industrial automation. To obtain the isolation of these domains, we developed a comprehensive architecture of these applications that integrates dynamically assigned resources, QoS-sensitive control, and high slice isolation. The model showed that the latency can be maintained at low levels (below 6 ms in the case of vehicle and below 12 ms in the case of an industrial slice) and that during a rigorous simulation of scenario, there is limited latency wastage and good separation of slices, despite heavy traffic, congestion, and single point failure of the network. These results demonstrate the necessity of more advanced slice management methods in the context of dealing with the promises of 5G on mission-critical applications. Future studies will focus on incorporating more complex mobility and traffic models and edge computing resources and using machine learning to orchestrate the adaptive and predictive slice orchestration. Such practices will enable the identification of the gap between the theoretical ideas of 5G network slicing and their real-life applications to the next generation of the mobile internet as an essential service.

References

- [1] Abidi, M. H., Alkhalefah, H., Moiduddin, K., Alazab, M., Mohammed, M. K., Ameen, W., & Gadekallu, T. R. (2021). Optimal 5G network slicing using machine learning and deep learning concepts. *Computer Standards & Interfaces*, 76, 103518. https://doi.org/10.1016/j.csi.2021.103518
- [2] Aravind, B., Harikrishnan, S., Santhosh, G., Vijay, J. E., & Saran Suaji, T. (2023). An efficient privacy-aware authentication framework for mobile cloud computing. *International Academic Journal of Innovative Research*, 10(1), 1-7. https://doi.org/10.71086/IAJIR/V10I1/IAJIR1001
- [3] Baggyalakshmi, N., Keerthana, A., & Revathi, R. (2023). Efficient compressor testing on railways with a mobile application. *International Academic Journal of Science and Engineering*, 10(2), 123–130. https://doi.org/10.9756/IAJSE/V10I2/IAJSE1016
- [4] Basnet, R. B., Shash, R., Johnson, C., Walgren, L., & Doleck, T. (2019). Towards Detecting and Classifying Network Intrusion Traffic Using Deep Learning Frameworks. *Journal of Internet Services and Information Security*, 9(4), 1-17.
- [5] Chekired, D. A., Togou, M. A., Khoukhi, L., & Ksentini, A. (2019). 5G-slicing-enabled scalable SDN core network: Toward an ultra-low latency of autonomous driving service. *IEEE Journal on Selected Areas in Communications*, 37(8), 1769-1782. https://doi.org/10.1109/JSAC.2019.2927065
- [6] Dawaliby, S., Bradai, A., & Pousset, Y. (2019). Distributed network slicing in large scale IoT based on coalitional multi-game theory. *IEEE Transactions on Network and Service Management*, 16(4), 1567-1580. https://doi.org/10.1109/TNSM.2019.2945254
- [7] De Alwis, C., Porambage, P., Dev, K., Gadekallu, T. R., & Liyanage, M. (2023). A survey on network slicing security: Attacks, challenges, solutions and research directions. *IEEE Communications Surveys & Tutorials*, 26(1), 534-570. https://doi.org/10.1109/COMST.2023.3312349
- [8] Foukas, X., Patounas, G., Elmokashfi, A., & Marina, M. K. (2017). Network slicing in 5G: Survey and challenges. *IEEE communications magazine*, 55(5), 94-100. https://doi.org/10.1109/MCOM.2017.1600951
- [9] Larrabeiti, D., Contreras, L. M., Otero, G., Hernández, J. A., & Fernandez-Palacios, J. P. (2023). Toward end-to-end latency management of 5G network slicing and fronthaul traffic. *Optical fiber technology*, 76, 103220. https://doi.org/10.1016/j.yofte.2022.103220
- [10] Mannonov, A., Rahmonov, H., Kodirova, K., Jalolova, S., Bayeshanov, A., Khamidova, S., Atajanov, S., & Karimov, U. (2025). The Impact of Uzbek-language Mobile Libraries on Digital Education. *Indian Journal of Information Sources and Services*, 15(1), 315–319. https://doi.org/10.51983/ijiss-2025.IJISS.15.1.40
- [11] Mitra, A., & Shah, K. (2024). Bridging the Digital Divide: Affordable Connectivity for Quality Education in Rural Communities. *International Journal of SDG's Prospects and Breakthroughs*, 2(1) 10-12.
- [12] Nassar, A., & Yilmaz, Y. (2021). Deep reinforcement learning for adaptive network slicing in 5G for intelligent vehicular systems and smart cities. *IEEE Internet of Things Journal*, 9(1), 222-235. https://doi.org/10.1109/JIOT.2021.3091674
- [13] Nwosu, P. O., & Adeloye, F. C. (2023). Transformation leader strategies for successful digital adaptation. *Global Perspectives in Management*, *1*(1), 1-16.
- [14] Nyambi, L. (2024). Optimizing End-to-End Throughput in Network-Sliced 5G Systems for Real-Time Collision Avoidance. *Journal of AI-Driven Automation, Predictive Maintenance, and Smart Technologies*, 9(12), 27-41.
- [15] Oladejo, S. O., & Falowo, O. E. (2020). Latency-aware dynamic resource allocation scheme for multi-tier 5G network: A network slicing-multitenancy scenario. *IEEe Access*, 8, 74834-74852. https://doi.org/10.1109/ACCESS.2020.2988710

- [16] Perdigão, A., Quevedo, J., & Aguiar, R. L. (2025). Automating 5G network slice management for industrial applications. *Computer Communications*, 229, 107991. https://doi.org/10.1016/j.comcom.2024.107991
- [17] Samdanis, K., Costa-Perez, X., & Sciancalepore, V. (2016). From network sharing to multi-tenancy: The 5G network slice broker. *IEEE Communications Magazine*, *54*(7), 32-39. https://doi.org/10.1109/MCOM.2016.7514161
- [18] Sethupathi, S., Singaravel, G., Gowtham, S., & Kumar, T. S. (2024). Cluster Head Selection for the Internet of Things (IoT) in Heterogeneous Wireless Sensor Networks (WSN) Based on Quality of Service (QoS) By Agile Process. *International Journal of Advances in Engineering and Emerging Technology*, 15(1), 01-05.
- [19] Taleb, T., Afolabi, I., & Bagaa, M. (2019). Orchestrating 5G network slices to support industrial internet and to shape next-generation smart factories. *Ieee Network*, 33(4), 146-154. https://doi.org/10.1109/MNET.2018.1800129
- [20] Taleb, T., Samdanis, K., Mada, B., Flinck, H., Dutta, S., & Sabella, D. (2017). On multi-access edge computing: A survey of the emerging 5G network edge cloud architecture and orchestration. *IEEE Communications Surveys* & *Tutorials*, *19*(3), 1657-1681. https://doi.org/10.1109/COMST.2017.2705720
- [21] Villota-Jacome, W. F., Rendon, O. M. C., & da Fonseca, N. L. (2022). Admission control for 5G core network slicing based on deep reinforcement learning. *IEEE Systems Journal*, *16*(3), 4686-4697. https://doi.org/10.1109/JSYST.2022.3172658
- [22] Zhang, H., Liu, N., Chu, X., Long, K., Aghvami, A. H., & Leung, V. C. (2017). Network slicing based 5G and future mobile networks: Mobility, resource management, and challenges. *IEEE communications magazine*, 55(8), 138-145. https://doi.org/10.1109/MCOM.2017.1600940
- [23] Zigui, L., Caluyo, F., Hernandez, R., Sarmiento, J., & Rosales, C. A. (2024). Improving Communication Networks to Transfer Data in Real Time for Environmental Monitoring and Data Collection. *Natural and Engineering Sciences*, 9(2), 198-212. https://doi.org/10.28978/nesciences.1569561

Authors Biography

Dr.A. Vaideghy, Assistant Professor, Department of Computer Science, PSG College of Arts & Science, Coimbatore, India. She is an accomplished college professor with 16 years of collegiate experience specializing in Data Mining and Machine Learning, recognized for creating dynamic learning environments and fostering student success through innovative curriculum design and personalized mentorship. Proven track record of impactful research with multiple publications in leading academic journals. A member of the team with numerous duties and leadership positions in accomplishing the objectives of the organization.

Dr. Haayder M. Abbas, Abbas is a faculty member at the Islamic University of Najaf, Iraq, in the Department of Computer Techniques Engineering. His research focuses on embedded systems, computer architecture, and intelligent automation. He has contributed to several studies and projects that integrate computational intelligence and advanced engineering methods to improve system efficiency and performance.

Hiader Shreef is a faculty member at the College of Engineering Technique, Al-Farahidi University, Baghdad, Iraq. His academic and research interests encompass engineering technologies, applied sciences, and innovative approaches to technical education. He actively contributes to advancing engineering methodologies and is involved in collaborative research aimed at improving technological applications and sustainable engineering solutions.

Anu Treesa George received the B.Tech in Information Technology from College of Engineering, Kallooppara, and M.Tech in Computer science and Engineering from Govt. Rajiv Gandhi Institute of Technology, Kottayam. She has over 3 years of teaching experience and is currently working as an Assistant Professor in the Department of Computer Science and Engineering at Vimal Jyothi Engineering College. She has attended various workshops in Android Development, Machene Learning and Deep learning etc. She has also qualified various Computer science and engineering related competitives exams like Gate. She also a member of the Association for Computing Machinery (ACM). Her areas of interest include Artificial Intelligence and Mahine Learning, Cyber Security, Cloud Security, Image processing etc.

R. Anitha obtained his Bachelor's degree (B.E) in Computer Science and Engineering degree in Madurai Kamaraj University in the year 2002 and Master's degree (M.E) in Computer Science from SRM University, Chennai, Tamil Nadu, India in theyear 2015. She works presently as an Assistant Professor in the Department of Information Technology, New Prince Shri Bhavani College of Engineering and Technology, Chennai, Tamil Nadu, India. Her main research interest includes Cloud computing, Cyber Security, Machine Learning, Data Science, soft computing

Dr. Nidhi Mishra is an Assistant Professor in the Department of Computer Science at Kalinga University, Naya Raipur, India. Her research interests include artificial intelligence, machine learning, data science, and software engineering. She has authored and co-authored several research papers in reputed journals and conferences, contributing to the advancement of modern computing technologies and their applications in academia and industry.