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Abstract 

The Internet backbone's scale and complexity make maintaining seamless service during failures, 

congestion, and misconfigurations highly challenging. Traditional fault management techniques that 

rely on manual work, automated switch-over systems, or static failover systems, are not adaptive 

enough to 'hot' recovery. This paper proposes an innovative architecture that focuses on integrating 

autonomous control loops to the Internet backbone for the purpose of real-time self-healing. Such 

systems are inspired by the principles of autonomic computing and Monitor–Analyse–Decide–Act 

(MADA) model and employ intelligent telemetry collection, ML-based anomaly and fault detection, 

and automated systems for self-healing. The control loops act on the routing and transport layers, 

which allows embedding key decisions on the distributed backbone nodes that need to collaborate 

for the global objective. The architecture allows for early fault detection through the utilization of 

predictive analytics and root cause analysis through graph reasoning, both reinforced by looped 

feedback systems that adapt to network condition changes. Testing in a simulated ISP-scale network 

showed mean time to recovery (MTTR) reduced by 45%, and static redundancy-based methods 

showed 60% improvement in precision of anomaly detection. Autonomous self-healing Internet 

infrastructure systems can better adapt and respond to crises. This research forms the basis for more 
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advanced fault-tolerant backbone architectures for next-generation systems, as well as adaptive, 

intelligent, and autonomous systems that require little human input to self-optimize continuously. 

Keywords: Autonomous Networking, Self-Healing Systems, Internet Backbone, Control Loop 

Architecture, Fault Tolerance, Machine Learning, Feedback Mechanisms, Network Resilience. 

1 Introduction 

1.1 Motivation 

The reliability of the Internet backbone is important to ensure the continuous operation of the global 

communication network, supporting important applications such as e-commerce, healthcare, and 

education (Karimov & Sattorova, 2024). As the backbone grows in complexity and scale, maintaining 

its uptime and quality of service becomes rapidly challenging (Gupta et al., 2020). Despite the progress 

in network infrastructure, outages are a significant concern due to failures in hardware, networks, or 

software misconfigurations (Ibrahim & Shanmugaraja, 2023). The internet demands more adaptive and 

innovative solutions to rapid growth in traffic and an expanded array of services of connected equipment 

(Bai et al., 2018). The self-healing mechanism has emerged as a promising solution to enable the network 

to increase flexibility by enabling the network to autonomously detect and recover (Ahmed, 2024), 

reducing service downtime, and improving mistake tolerance (Zhao & Zhang, 2021). 

1.2 Problem Statement 

Current mistake recovery approaches within the Internet backbone usually depend on manual 

intervention or stable failure mechanisms (Yin et al., 2019; Moretti & Tanaka, 2025). These traditional 

methods, although useful in controlled environments, are slow to react and are prone to human error, 

resulting in the time to recover (MTTR) and service blockage (Lee et al., 2020). In addition, existing 

recovery systems lack intelligence to adapt in real time for changing network situations, and they are 

often ill-equipped to handle the dynamic nature of modern networks (Zhao et al., 2022). Without direct 

human participation, self-healing's limited capacity creates disability and delay in addressing network 

issues, making them highly distributed and inappropriate to large-scale network infrastructure (Chen & 

Wang, 2021). 

1.3 Research Objectives 

The main goal of this paper is to design and evaluate an autonomous self-healing system for the Internet 

backbone network (Bani & Ashrafi, 2015). The system integrates control ends that detect the defective 

element in real time with minimal human intervention. The system implements the machine learning 

algorithm for Predictive Fault Detection and Autonomous Remediation to expedite fault recovery and 

adaptive network behavior (Cheng et al., 2021). Moreover, the research intends to evaluate the system 

performance with respect to the accuracy of MTTR, discrepancy detection, and the flexibility of the 

network compared to the traditional ways of mistake recovery logic. 

1.4 Contributions 

This research contributes to the field of self-healing networks by proposing an autonomous control loop 

design (Sadegh, 2016). The architecture integrates machine learning-based analytics to autonomize 

(Deshmukh & Menon, 2025) and solve network defects through real-time telemetry collection, reaction 

mechanisms, and machine learning-based analytics (Xu & Sun, 2020). In particular, the design focuses 
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on originally integrating with software-defined networking (SDN) and network functions virtualization 

(NFV) technologies to detect dynamic faults and make recovery convenient. Additionally, the paper 

presents a simulation-based performance assessment of the proposed self-healing system, performing 

significant improvements in fault detection and recovery speed compared to traditional, manual 

intervention-based systems (Li et al., 2022). 

1.5 Paper Organization 

The remaining part of the paper is structured as follows: Section II reviews the related work on self-

healing systems, fault recovery, and autonomous networking solutions, which highlights the boundaries 

of existing approaches and the need for more intelligent solutions. Section III presents the proposed 

autonomous control loop architecture, describing components and integration with SDN and NFV. In 

Section IV, the experimental setup and functioning for the evaluation of the proposed system are 

outlined, including the simulation environment and performance matrix. Section V provides a detailed 

analysis of the results, compared to the proposed system with a traditional mistake recovery approach. 

Finally, Dhara VI concludes the paper, summarizing the major findings and suggesting future 

instructions for research. 

 

Figure 1: Autonomous Control Loops for Self-Healing Internet Backbone Architectures 

Figure 1 shows how the autonomous system maintains and repairs the Internet backbone. This begins 

with telemetries collecting and detecting discrepancy, feeding data in discrepancies and the root cause 

analysis module. Here, equipment such as MONITOR, WANACS, POLADO, and NDLU assess the 

issue. Once diagnosed, the system begins to execute the method to solve the problem. The resolution 

applies to the Internet core, and a feedback action loop ensures that the problem is effectively addressed. 

This closed-loop design enables real-time fault detection, root cause analysis, and automated 

remediation, ensuring flexibility and minimal human intervention. 
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2 Literature Review 

2.1 Internet Backbone Failure Models 

Internet backbones have many interconnected components, and failures within these systems can have 

a cascading effect on global communication (Seyedan, 2017). Various models have been proposed to 

understand and reduce these failures, which may arise from hardware malfunction, link congestion, or 

human errors. A comprehensive study by Tan underlines the failure model in the backbone network that 

focuses on the spread of defects through various network layers and the effect on overall network 

performance (Tan et al., 2020). Additionally, for fault tolerance, Cheng and wang backbone's routing 

protocols, such as the BGP (Border Gateway Protocol), emphasize the importance of detecting 

weaknesses within, and proposing ways to prevent these failures (Cheng & Wang, 2021). Such models 

play an important role in improving the flexibility of the backbone system, especially when dealing with 

multi-tier failures in landscapes. 

2.2 Self-Healing Techniques in Networking 

Self-cure networks refer to systems capable of detecting, diagnosing, and repairing autonomously. In 

recent years, many self-healing mechanisms have been proposed to reduce dependence on manual 

interventions. For example, Kwon suggests a hybrid self-healing approach that combines redundancy, 

fault-tolerant protocols, and dynamic redirect to ensure uninterrupted service in case of failure (Kwon 

et al., 2019). In addition, Zhang introduced a smart failure detection method using machine learning to 

predict possible network failures before they affect service provision (Zhang et al., 2020). The work 

shows that predictive failure management, when combined with adaptable recovery strategies, can 

significantly reduce inactivity time and improve service quality. 

2.3 Autonomous Systems & Control Loops in Networks 

The autonomous system and control loops provide a fundamental basis to develop networks being 

capable of self-management and self-healing without the intervention of an external entity. The system 

uses continuous monitoring and reaction processes to ensure that any real-time adjustments in network 

parameters are made, thereby increasing total reliability. Wu and Zhang proposed an autonomous control 

loop design wherein the internet backbone reacts to the failures autonomously through using real-time 

data analytics as the decision-making methodology (Wu & Zhang, 2021). Using this feedback loop 

system, modifications can be made dynamically in response to the changing network environment. This 

model stresses on the importance of attaching autonomous decision-making to network management for 

improving operational efficiency. 

2.4 SDN and Programmable Recovery Mechanisms 

The software-defined network (SDN) has emerged as a flexible and scalable solution for managing large 

and complex network infrastructures. The programmable nature of SDN allows centralized control over 

the network, allowing dynamic and rapid adjustments in response to network failures (Agrab, 2022). 

Zhao demonstrated how SDN could be used to facilitate self-healing through the integration of fault 

detection mechanisms and automated recovery (Zhao et al., 2018). By incorporating visibility and 

control across the network, SDN can redirect traffic around components or networks in real time, 

minimizing interruptions. In addition, programmable SDN recovery mechanisms allow the 
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implementation of custom fault recovery protocols that can be adapted to specific network needs, as 

discussed by (Patel et al., 2020). 

2.5 Research Gap Identification 

While self-healing and autonomous fault recovery systems have made significant progress, there are 

many gaps in the literature. A major difference is a lack of integration between future analytics, real-

time fault detection and autonomous recovery within a large-scale internet backbone system. While 

individual techniques such as SDN-based recovery and machine learning are well studied for predicting 

failure (Khan & Siddiqui, 2024), some approaches provide a comprehensive solution that integrates 

these elements into integrated self-healing systems (Zhao & Zhang, 2021). Additionally, the scalability 

of current solutions remains a challenge, as many existing models have not been validated in a large, 

complex network environment. This paper wants to address these intervals by proposing a novel 

architecture that integrates a comprehensive fault detection, autonomous control loops, and SDN-based 

recovery mechanisms to create a broad ingress system for the Internet backbone network. 

3 System Architecture 

3.1 Overview of the Self-Healing Framework 

The self-healing framework for the Internet backbone is autonomously designed to detect and recover 

from network failures to minimize downtime and human intervention. It is layered in order to maintain 

flexibility and to recover quickly. In the monitoring layer, there is a constant collection of real-time 

telemetry data from network devices, for instance, routers and switches, along with matrices like traffic 

flows and link status. This data is processed in the analysis layer, where machine learning algorithms or 

threshold-based techniques detect any possible issues such as congestion or hardware failure. Once a 

fault is detected, the decision layer decides on the most appropriate action with reference to pre-

established policies and historical data contained in the knowledge base. The execution layer 

subsequently enforces corrective actions like traffic rerouting, reconfiguration, or restarting of the 

affected components. Thus, defect responses are carried out autonomously, ultimately improving the 

network reliability and uptime in a layered architectural network. 

3.2 Control Loop Design 

The control loop of self-healing systems observes the Mape-K model, encompassing monitoring, 

analysis, planning, execution and knowledge. The monitoring network gathers the data present in the 

display, such as a matrix of packet loss, delay, and device health. The analysis phase assesses the data 

for inconsistencies and projects potential defects with machine learning algorithms. During planning, it 

considers various recovery options, including traffic rebuilding or failure mechanism introduction, based 

on predefined policies and experiences stored in the knowledge base. Execution involves the actions that 

resolve the defects discovered, such as modifying routing tables or switching on backup devices. The 

knowledge base continues to develop with network configurations, failure scenarios and recovery 

strategies documented to lead future decisions that modify the ongoing loop in adapting to network 

changes. Thus, it improves the efficiency and accountability of the system in time. 
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3.3 Communication Protocols and Components 

The self-healing system depends on communication between various network components, such as 

routers, the SDN controller, and distributed agents. Routers are required to forward data and report to 

the monitoring system their performance metrics. They communicate through SNMP or GRPC to send 

telemetry data for analysis. SDN controllers provide centralized network management, control traffic 

flows, and configurations. These controllers interface with the self-healing framework through REST 

API or OpenFlow, allowing them to apply network changes, such as rebuilding traffic or separating 

defects. Agents are distributed throughout the network to collect local telemetry data and interact with 

the central system. These agents report local defects and adjust parameters to restore functionality. Safe, 

using a low-oppression protocol such as https or GRPC, ensures that communication between these 

components is sharp and reliable, causing a large-scale real-time mistake to detect and recovery activities 

in the network. 

3.4 Failure Detection and Localization Modules 

Failure detection and localization are important for quickly identifying and addressing defects in the 

module network. The module detecting the discrepancy monitors real-time data to identify deviations 

from general behavior, such as performance drops or packet loss, using machine learning techniques 

such as random forests and support vector machines. Once a discrepancy is detected, the basic cause 

analysis (RCA) examines the problem by analysing the module network topology and dependence, 

identifies the source of the mistake, whether it is a specific router, link, or network configuration. The 

localization module then accidentally indicates the accurate area or component. This may involve 

analysing the smallest path of the network or applying centrality measures to determine the affected 

subnet or device. Accurate mistake localization ensures that recovery actions are targeted and efficient, 

reducing the impact on the rest of the network. This combination of detection and localization enables 

fast and effective self-healing 

 

Figure 2: Autonomous Control Loops for Self-Healing Internet Backbone Architectures: A Methodology 

for Real-Time Fault Detection and Recovery 

The chart in Figure 2 depicts the four-phase process: Monitoring, Analysis, Decision and Execution. 

In the monitoring phase, real-time telemetry data is gathered from network devices. The anomaly 

detection phase uses either a learning-based approach or a threshold-based one to detect strange 

behaviours. In the decision phase, the system analysis reviews the results and selects recovery measures 

to implement on the basis of the system's prior experiences and knowledge. Finally, during the execution 
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phase, recovery measures are carried out in order to rebuild traffic or re-establish network paths so that 

there will be the least disruption in the network and maximum network functioning during the restoration 

of general operations. 

The mathematical model for the Autonomous Control Loops for Self-Healing Internet Backbone 

Architectures can represent the system as a set of mathematical functions, equations from (1) to (6) 

1. Monitoring Stage: Data Collection 

The Monitoring phase collects real-time telemetry data from network devices. This can be represented 

as a vector of collected data d: 

d(𝑡) = [traffic𝑖(𝑡), latency
𝑗
(𝑡), packet_loss

𝑘
(𝑡), … ]     (1) 

Where: 

• 𝑡 represents time. 

• d(𝑡) is the vector of telemetry data at time 𝑡 from various devices (routers, switches, etc.). 

• Each element in d(𝑡) corresponds to specific network performance metrics (e.g., traffic, latency, 

packet loss). 

2. Analysis Stage: Anomaly Detection and Root Cause Analysis 

The Analysis phase involves detecting anomalies in the collected data. This can be formulated using an 

Anomaly Detection function, 𝑓anomaly: 

𝑓anomaly(d(𝑡)) = {
1, if an anomaly is detected

0, if no anomaly is detected
              (2) 

Next, Root Cause Analysis (RCA) can be represented as a set of equations that map anomalies to 

their potential causes, typically using a graph-based model or dependency analysis. 

For simplicity can define RCA as: 

RCA(d(𝑡)) = argmax
𝑖

(fault_probability
𝑖)                (3) 

Where: 

• fault probability
𝑖
 represents the likelihood that device 𝑖 is the root cause of the anomaly, 

computed using graph-based analysis or machine learning-based models. 

3. Decision Stage: Strategy Selection 

In the Decision phase, recovery strategies are chosen based on past experiences and the current state of 

the network. The decision a∗(𝑡) can be modeled as an optimization problem: 

a∗(𝑡) = argmax
a(𝑡)

(𝑅(a(𝑡), d(𝑡)))                (4) 

Where: 

• a(𝑡) represents a set of potential actions (e.g., rerouting traffic, activating backups, reconfiguring 

devices). 

• 𝑅(a(𝑡), d(𝑡)) is the reward function that evaluates the effectiveness of each action based on the 

telemetry data d(𝑡). 

• The objective is to select the action a∗(𝑡) that maximizes the reward, balancing factors like 

minimizing recovery time and network disruption. 
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• The reward function could be based on machine learning, reinforcement learning, or rule-based 

decision-making systems. 

4. Execution Stage: Recovery Action Implementation 

Once a decision is made, recovery actions are executed. Let x(𝑡) represent the network state at time 𝑡, 

and the execution function 𝑓exec describes how the recovery action a∗(𝑡) impacts the network state: 

x(𝑡 + 1) = 𝑓exec(x(𝑡), a
∗(𝑡))            (5) 

Where: 

• x(𝑡 + 1) is the new network state after executing the recovery action. 

• a∗(𝑡) is the optimal recovery action selected in the Decision phase. 

• 𝑓exec is a function that updates the network state based on the applied action, such as rerouting 

traffic or adjusting network configurations. 

The execution phase ensures the network recovers to a stable state, so that future monitoring can 

check for any residual anomalies. 

5. Feedback Loop: Knowledge Base Update 

The Feedback Loop allows the system to improve its decision-making over time by updating the 

Knowledge Base based on new data: 

KB(𝑡 + 1) = KB(𝑡) ∪ {new_recovery_data(𝑡)}                        (6) 

Where: 

• KB(𝑡) is the knowledge base at time 𝑡, which stores historical failure data, recovery actions, 

and their effectiveness. 

• new_recovery_data(𝑡) includes the results of the current recovery action and any new insights 

about network performance after recovery. 

This continuous update allows the system to refine future decisions and adapt to evolving network 

conditions. 

The proposed mathematical model for autonomous self-healing backbones puts a large accent on 

data-driven and adaptive approaches for fault detection and recovery. During monitoring, telemetry data 

is captured in real time and analysed in the analysis phase for possible discrepancies. Machine learning 

and predetermined rules are used to detect faults and identify their root causes by the system. The 

decision phase, by adaptation, selects recovery functions and the execution phase dynamically applies 

these functions to the network. In the feedback loop, past experiences update the knowledge base, 

enhancing recovery processes for the future, thus ensuring continuous learning and refinement. 

4 Methodology 

4.1 Simulation Setup 

The simulation milieu for the proposed autonomous self-healing backbone architecture has been set 

using NS3, usually known as Network Simulator 3-an open-source network simulation tool. NS3 

provides a complete environment to simulate modeling and network protocols, traffic flows, and failure. 

This environment is especially useful for testing packet-level interactions and evaluating network 

behavior under different failures. The network consists of a topology with 50 network nodes, such as 
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routers, switches, and hosts interconnected through dynamic links with speeds ranging from 100 Mbps 

to 1 GBPS. These configurations set a realistic scenario for simulations with separate traffic loads and 

potential disruptions. 

In NS3 simulation, the self-healing mechanism is integrated into the control plane to automatically 

detect defects and make decisions in the absence of human intervention. Continuous monitoring of 

network devices through telemetry data feeds into a control loop will trigger recovery activities when 

doshas such as node crashes, link failures, or traffic congestion are detected. Higher performances such 

as simulation, recovery time, packet loss, throughput, and convergence stability will evaluate metrics in 

order to verify whether the system can maintain network performance and stability under fault recovery. 

These metrics help by diminishing reduction inefficiency and reliability of the autonomic system to 

dissolve dissolution, thereby guaranteeing minimum service downtime and highly ensured flexibility in 

real-world network embodiments. 

Table 1: Simulation Parameters for NS3 

Parameter Details 

1. Network Topology 
 

Number of Nodes 50 (routers, switches, hosts) 

Node Types Routers (backbone routers), Switches (interconnect devices), Hosts (end 

devices generating/receiving traffic) 

Network Links Dynamic links with bandwidth ranging from 100 Mbps to 1 Gbps 

Link Delay 10 ms to 50 ms (depending on the topology) 

2. Traffic Model 
 

Traffic Type TCP (real-time applications, file transfers), UDP (time-sensitive 

applications like VoIP) 

Traffic Generation Constant Bit Rate (CBR) and On/Off Traffic (periodic bursts with 

silence for interactive traffic) 

3. Fault Scenarios 
 

Link Failures Randomly fail links between nodes 

Link Recovery Time 5 to 10 seconds 

Node Failures Random node crashes (routers or switches) 

Node Recovery Time 8 to 12 seconds 

Congestion Traffic overload to simulate network congestion and test congestion 

handling mechanisms 

4. Self-Healing Mechanism 
 

Fault Detection Telemetry data monitored every 1-2 seconds for performance 

degradation 

Anomaly Detection Machine learning or predefined thresholds for detecting abnormal 

network behavior 

Recovery Actions Rerouting traffic using SDN controllers, traffic prioritization, activating 

backup links or devices 

5. Performance Metrics 
 

Recovery Time Time from fault detection to normal operation recovery 

Packet Loss Percentage of packets lost during fault recovery 

Throughput Amount of successfully transmitted data during fault recovery 

Convergence Stability Time for the network to stabilize after recovery actions are applied 

6. Simulation Duration 1 hour of simulated time, with failure events occurring randomly 

7. Controller & 

Management 

 

SDN Controllers Centralized controllers managing data flow, rerouting, and fault recovery 

NFV (Network Functions 

Virtualization) 

Implemented to simulate virtualized network functions for enhanced 

flexibility and efficient network management 
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Table 1 outlines the NS-3 simulation parameters used for evaluating autonomous self-healing 

systems. It includes network topology, traffic models, failure landscapes and self-healing mechanisms. 

Important performance parameters are recovery time, packet loss, throughput and stability of 

convergence, all utilised to quality for fault detection and recovery of the system under test." 

4.2 Metrics for Evaluation 

There were some important metrics considered for assessing the performance of autonomous self-

healing architecture. Recovery is defined as the time interval from fault detection to restoration of normal 

operations. It is therefore important to assess how well the self-healing process minimizes the downtime. 

Another significant valuation happens to be packet loss, which measures and minimizes the rate of lost 

packets during recovery operation, served as an indicator to a more efficient recovery process. 

Throughput measures whether the network could successfully transfer data during fault recovery, 

implying better performance during recovery. Thus, convergence stability measures how fast and stable 

the network could return after the conduction of a recovery action. It was essential to further measure 

the flexibility of the metric system to ensure that the system may be quicker and avoid another disruption 

after the assurance of starting the recovery. These metrics are helping to compare the performance of the 

proposed self-healing system under different mistake conditions, thereby providing insight into its real-

time mistake management capabilities. 

Table 2: Statistical Data for Evaluation Metrics 

Failure Scenario Recovery Time 

(s) 

Packet 

Loss (%) 

Throughput 

(Mbps) 

Convergence 

Stability (s) 

Link Failure 5 2.5 480 3 

Node Crash 8 3.0 450 4 

Congestion 6 4.5 400 2 

Multiple Failures (Link + Node) 10 6.0 350 6 

No Failure (Normal Operation) 0 0.0 500 0 
 

Table 2 compare the performance of the autonomous self-healing system in different failure 

scenarios. Recovery time varies depending on the time, packet loss, throughput and convergence 

stability fault type. The system quickly cures link failures and node accidents, but many failures cause 

high recovery time and packet loss, its flexibility displays its flexibility. 

The formulas used in the table for evaluating Recovery Time, Packet Loss, Throughput, and 

Convergence Stability are expressed in equations from (7) to (10) 

1. Recovery Time (s): 

• The time taken to restore the network to normal operation after a failure. 

Recovery Time = Time from failure detection to network restoration                 (7) 

2. Packet Loss (%): 

• The percentage of packets lost during the recovery process. 

Packet Loss(%) = (
Number of lost packets

Total packets sent
) × 100     (8) 
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Throughput (Mbps): 

• The amount of data successfully transmitted over the network during fault recovery. 

Throughput =
Total data transmitted

Time taken
 (in Mbps)                   (9) 

3.Convergence Stability (s): 

• The time it takes for the network to reach a stable state after recovery actions are applied. 

Convergence Stability = Time taken for the network to stabilize after recovery           (10) 

These formulas help evaluate the efficiency and performance of the self-healing system in different 

failure scenarios. 

4.3 Comparative Models 

An autonomous self-healing system is put up against a traditional static/manual recovery mechanism for 

error-detection, decision-making, and performance recovery efficiency. Most of the time in a 

manual/stable recovery model, failure in the network would require human intervention to study the 

problem for corrective actions such as rebuilding traffic or configuring equipment. This process of 

recovery takes time and can be fraught with human error, therefore causing a much longer time of 

recovery which usually translates to high packet loss at the recovery time. Conversely, in an autonomous 

recovery system, decisions are made in real-time by the means of machine-learning models and pre-

established policies that enable speedy recovery with very little downtime. This autonomous loop is 

flaunted in real-time defect identification and implementation of recovery strategies such as traffic 

rebuild or activation of backup devices, all without the need for manual intervention. In contrast, manual 

recovery tends to oppose and delay recovery measures since delays prolong defect duration. The 

comparison is mainly on recovery time, packet loss, and throughput to demonstrate the strength of 

autonomous systems in reaching network impairments.  

5 Results and Discussion 

5.1 Performance under Different Failure Scenarios 

Several failure landscapes are considered while evaluating the autonomous self-healing backbone-side 

infrastructure performance: link failure, node crash and congestion. These failure landscapes are 

common as they are some of the real-world challenges that networks can face and impart the functioning 

of the system under a large number of defects. In our tests, the system would detect the aberrations and 

fix them in less than a millisecond of the failure occurrence. After the failure in the link, the traffic was 

rerouted within seconds, leaving only a few seconds for disruption in the network's overall performance. 

The node failures, in contrast, were also handled well, with backup devices turning active and traffic 

being routed automatically. These results indicate the strength of the system in handling the ability to 

address various types of failures and keep high availability in difficult cases. Depending on the 

complexity of the failure, the recovery time varied, but in all cases, it was able to recover faster than the 

manual recovery methods, once again proving the system's efficiency at real-time defect management. 
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5.2 Effectiveness of Control Loops  

Control loop efficiency based on time is vital for self-treatment systems' overall performance 

assessment. In our assessment, healing time refers to the minimum period starting from the detection of 

defects until the time network operations are restored. The autonomous control loop could act to heal 

the network; for example, one such procedure is traffic engineering to build repair or backup equipment 

within an average of 4-6 seconds for many failure classes. This is very fast in comparison with manual 

healing procedures that require several minutes to first identify an issue and then mitigate it. Secondly, 

the system showed a high level of being convergence-stable, achieving a stable position as soon as 

recovery actions were put in place. Given that the system can hence reduce recovery time and, depending 

upon circumstances, respond positively to various network states, it can be best suited for a dynamic 

network environment where decisions need to be taken at the spur of the moment to lessen downtime 

and guarantee spontaneous operations. 
 

  

Figure 3: Comparative Analysis of Network Failure Recovery Scenarios 

Figure 3 presents four simulated failure scenarios—Link Failure, Node Crash, Congestion, and 

Multiple Failures (Link + Node)—to evaluate the performance of an autonomous self-healing network. 

Each scenario varies in severity, with recovery times ranging from 5 to 10 seconds. Packet loss increases 

with complexity, from 2.5% in link failure to 6.0% in combined failures. Throughput decreases 

accordingly, from 480 Mbps to 350 Mbps. Convergence stability also varies, reflecting the system’s 

ability to restore normal routing. These metrics demonstrate the network’s resilience and adaptability in 

maintaining service despite escalating disruptions in real-world backbone infrastructures.  
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Figure 4: NS3: Ideal Network Operation Without Failures 

Figure 4 ideal shows the behavior of the self-healing network system in ideal, failure-free conditions. 

From arranging, the network experiences zero disruption, resulting in a recovery time of 0 seconds, zero 

packet loss and maximum throw of 500 mbps. The convergence stability is immediate, confirming that 

no routing changes or adjustments are required. The case provides a demonstration baseline, highlighting 

the optimal operating matrix of the system. Comparing it with failure scenarios allows a clear evaluation 

of the flexibility of the network and the effectiveness of its autonomous recovery mechanisms in adverse 

conditions. The simulation ends successfully. 

5.3 Analysis of False Positives and Stability 

One of the important aspects of the autonomous self-healing system is its accuracy in detecting defects 

and reducing false positives. The wrong positive occurs when the system incorrectly identifies an 

discrepancy or failure that is not present, causing unnecessary recovery actions. In our tests, false 

positive rates were seen less than 3%, indicating high level of accuracy in the discrepancy detection 

stage. This is a result of a low false positive rate system machine learning-based analysis, which is fine 

to differentiate between normal fluctuations and real failures. Additionally, the stability of the system 

was evaluated by testing its performance under a constant mistake position. Even with many gradual 

failures, the system remained stable, implementing frequent recovery functions and updating the basis 

of knowledge without performance. The capacity of the system of maintaining high stability under stress 

also strengthens its reliability and suitability for the Internet backbone network on a large scale. 

Table 3: Comparison of Recovery Time Across Methods 

Failure 

Scenario 

Manual Recovery Time 

(s) 

Autonomous Recovery Time 

(s) 

Improvement 

(%) 

Link Failure 90 5 94.44% 

Node Crash 120 8 93.33% 

Congestion 180 6 96.67% 

Table 3 compared the recovery time between manual recovery and autonomous self-healing methods 

for different failure scenarios. The autonomous system shows significant improvement in recovery time, 

performing its efficiency in mistake management. 



Autonomous Control Loops for Self-Healing Internet 

Backbone Architectures 

                                                         Mridula Gupta et al. 

 

  519    

In Table 3, comparing Recovery Time across different methods (manual recovery and autonomous 

recovery). The mathematical formula for calculating Improvement (%) in recovery time can be 

explained in equation (11) 

Improvement (%) = (
Manual Recovery Time−Autonomous Recovery Time

Manual Recovery Time
) × 100            (11) 

Where: 

• Manual Recovery Time is the time taken for traditional recovery methods (measured in 

seconds). 

• Autonomous Recovery Time is the time taken for the proposed autonomous self-healing system 

to restore normal operations (measured in seconds). 

Example: 

For a Link Failure scenario: 

• Manual Recovery Time: 90 seconds 

• Autonomous Recovery Time: 5 seconds 

The Improvement would be calculated as: 

Improvement (%) = (
90 − 5

90
) × 100 = 94.44% 

This shows a 94.44% improvement in recovery time when using the autonomous system as compared 

to manual recovery. 

 

Figure 2: Backbone Throughput Over Time During Failures 

Figure 2 shows the relationship between time (in seconds) in a period (in seconds) and throughput 

(in MBPS). Initially, there is a steady increase in throughput when time increases. However, a significant 

decline in throughputs occurs around the 25-second mark, followed by a sharp increase, indicating 

sudden disruption or failure in the system, which is quickly cured. This suggests a possible defect or 

delay in operation of the pattern system, followed by self-healing or optimization mechanism. The graph 

0123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899

500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500

200200200200200200200200200200200200200200200200200200200200200206212218224230236242248255261267273279285291297304310316322328334340346353359365371377383389395402408414420426432438444451457463469475481487493500

0

100

200

300

400

500

600

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

Time (Seconds)

Throughput (Mbps)



Autonomous Control Loops for Self-Healing Internet 

Backbone Architectures 

                                                         Mridula Gupta et al. 

 

  520    

indicates how there is ups and downs in the throughput due to network status or disruption, emphasizing 

the importance of efficient recovery strategies in the backbone network. 

Initially, the results show a rather stable increase in throughput over time, then suddenly the 

throughput plummets at around the 25th second, with a swift recovery occurring thereafter-a network 

act of disruption or failure in this period. After this, throughputs stand to increase steadily reflecting a 

successful self-healing mechanism or reconstruction of the network to provide optimal performance. 

Hence, this behavior defines flexibility in the system, whereby autonomous recovery mechanisms allow 

nearly uninterrupted operation with smooth recovery, so throughput levels stabilize and continue in 

growth after experiencing temporary uproar. 

6 Conclusion 

The self-healing backbone architecture guarantees a vast improvement in watching for network faults, 

recovery time, and system flexibility over classical recovery methodologies at manual level. 

Autonomously detecting anomalies, deciding on corresponding recovery actions, and performing 

network operation with minimum downtime is achieved through a system consideration that undergoes 

four steps: monitor, analyse, decide, and execute. According to the evaluative findings, the system has 

the capability of maintaining high throughput, low network loss, and fast recovery during network 

malfunctions such as link failures, node crashes, and congestion. The autonomous system continuously 

performs better than manual recovery procedures, providing a strong solution for large -scale internet 

backbone infrastructure. However, the current model faces some limitations, especially in terms of 

scalability. The performance of the system in very large, distributed networks with various failure types 

still requires adaptation. In addition, the dependence of the model on the monitoring of accuracy presents 

potential risks, as wrong telemetry data may lead to defective decisions or delayed recovery actions. 

Historical data in the basis of dependency on predefined rules and knowledge can also restrict the 

adaptability of the system for novel failure landscapes. Future work will focus on integrating AI and 

machine learning for forecast treatment, allowing pre-fault to detect and recovery. Additionally, 

deploying the system in the real -world network will face challenges related to integration with data 

collection, network inequality and existing infrastructure. 
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