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Abstract

Internet of Things (1oT) devices face increasing security threats while operating under severe energy
constraints. This research addresses the critical challenge of implementing effective cybersecurity
measures within sustainable energy frameworks for resource-constrained loT environments. The
research presents Sustainable Micro-Neural Energy-Efficient Security Intelligence (SMEESI), a
novel TinyML-enabled intrusion detection system (IDS) that significantly reduces energy
consumption while maintaining robust security capabilities. The research innovation combines
lightweight neural network architectures with energy-aware anomaly detection algorithms
specifically optimized for microcontroller deployment. The SMEESI framework includes an
adaptive power management module that dynamically adjusts computational intensity based on
threat levels, achieving energy efficiency without compromising security posture. Performance
evaluation demonstrates a 78% reduction in power consumption compared to traditional IDS
implementations while maintaining 94.3% detection accuracy across multiple attack vectors.
Memory footprint requirements decreased by 65%, enabling deployment on severely resource-
limited IoT sensors and actuators. The system has been successfully tested in smart buildings,
industrial monitoring, and healthcare loT applications, proving its versatility across critical
infrastructure domains. This research contributes to green cybersecurity by enabling sustainable
security monitoring in 10T ecosystems, extending device battery life, reducing electronic waste
through prolonged hardware lifecycles, and minimizing the carbon footprint of security operations
while maintaining essential protection against evolving cyber threats in the digital age.
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1 Introduction

The Internet of Things (1oT) has become a significant digital paradigm, with an estimated 27.1 billion
connected devices worldwide as of 2024. These devices generate 79.4 zettabytes of data annually and
are used in various sectors (Kulkarni & Angurala, 2024). However, this connectivity has also created a
vast attack surface, with an average of 5,200 attacks per month and a 300% increase in loT-specific
malware variants between 2020 and 2024. 10T devices operate under severe constraints in processing
capabilities, memory capacity, and energy availability, which presents significant challenges for
implementing robust security measures (Cano-Sufién et al., 2023). The energy constraints of 0T devices
also pose a significant challenge for cybersecurity implementation (Krishnan et al., 2020), as they
operate on limited power sources (Hussain & Qureshi, 2024). Conventional security solutions can
rapidly deplete these reserves, reducing device operational lifetime by 40-60% (Rekeraho et al., 2024).
This energy-security tradeoff has forced many loT implementations to compromise on security
measures, with 78% of deployed loT devices remaining vulnerable to known attacks (Rupanetti &
Kaabouch, 2024).

The Internet of Things (10T) security challenges have led to significant research efforts, focusing on
three main approaches: lightweight cryptographic solutions, rule-based anomaly detection, and edge-
cloud collaborative security frameworks (Zhukabayeva et al., 2025). These approaches offer advantages
but have limitations (Pandey & Bhushan, 2024). Lightweight cryptographic solutions reduce memory
footprint and energy consumption but offer limited protection against sophisticated attacks (Chatterjee
& Chakraborty, 2024). Rule-based anomaly detection systems require minimal resources but suffer from
poor detection rates and manual rule generation (Suryavanshi et al., 2025). Edge-cloud collaborative
frameworks reduce on-device resource consumption but introduce new vulnerabilities (Ahmed et al.,
2024). Machine learning has shown promise for IoT security, but conventional models require
substantial resources, making them unsuitable for resource-constrained 10T environments (Ball &
Degischer, 2024). This research gap highlights the need for intrusion detection systems that balance high
detection accuracy, energy efficiency, and adaptability to emerging threats (Abdulganiyu et al., 2024).

System-wide failures and energy inefficiencies make the 10T security and sustainability research gap
large (Oliveiraet al., 2024). loT security operations consume 11% of I0T energy, a major environmental
impact. One interesting approach is TinyML, which implements machine learning algorithms on
microcontrollers to reduce neural network memory and improve accuracy (Rekeraho et al., 2025; Tan
et al., 2024). Embedded applications save 40-70% of energy with adaptive computing. TinyML and
adaptive computing can create intrusion detection systems that balance security and resource use (Tekin
et al., 2023). The research focuses on developing SMEESI, a TinyML-enabled intrusion detection
system for energy-constrained l0T ecosystems, to address technical challenges. The primary objectives
of this research are:

e To design and implement a TinyML-enabled intrusion detection system (SMEESI) that ensures
robust security for IoT devices while operating within strict energy and memory constraints.

e To develop and integrate lightweight neural models, including Quantized Convolutional Neural
Networks (Q-CNNs) and Autoencoder-based anomaly detection, optimized for microcontroller
deployment via model quantization.
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¢ To enhance system sustainability by incorporating an adaptive power management module using a
Fuzzy Logic Controller (FLC) that dynamically regulates processing intensity based on detected
threat levels.

e To evaluate and validate the proposed system's effectiveness in terms of energy efficiency, detection
accuracy, memory optimization, and real-world applicability in domains such as smart buildings,
industrial monitoring, and healthcare IoT.

o A summary of the research follows. Second section: thorough literature and research
methodological review. Section 3 covers the study plan, methods, and processing; Section 4
presents analysis results. Conclusion and future work are in Section 5.

2 Literature Survey

Kallimani et al., (2024) demonstrated that 10T and edge computing have increased interest in Artificial
Intelligence (Al) and Machine Learning (ML). Embedded ML approach TinyML allows applications on
cheap, resource- and power-constrained devices. Problems including processing capacity optimization,
dependability, and learning model accuracy necessitate quick answers. The study covers TinyML
implementation, including background, tools, state-of-the-art applications leveraging advanced
technologies, and future research problems and directions (Hashemi, 2016).

Patil et al. used TinyML technology in healthcare, industrial automation, and agriculture to
demonstrate its potential for using the Internet of Things. However, privacy and security worries are
mounting. Adversarial, malware, and supply chain threats on TinyML devices are covered in the chapter.
It also examines encryption, authentication, access control, and intrusion detection systems, their pros
and cons, and future research (Rishikesh et al., 2022). The study finishes by discussing future TinyML
security concerns and potential, highlighting the necessity for collaboration between researchers,
practitioners, and policymakers to establish robust security solutions.

Tekin et al., (2023) demonstrated that loT technology has made Smart Home Systems (SHSs)
popular, but it has been subject to attacks and privacy concerns. Intrusion Detection Systems (IDS) based
on machine learning are suggested to address these difficulties. Most ML models are trained on cloud
services, which might slow real-time applications. On-device ML models with local user data seem
promising. However, these models use plenty of energy. This article analyzes cloud, edge, and 10T
device-based ML algorithms for loT intrusion detection. TinyML for tiny 10T devices improves training,
inference, and power consumption.

Ranpara et al., (2025) stated that GreenMU is a unique framework for energy efficiency and
performance in intrusion detection systems. To balance computational efficiency and cybersecurity
accuracy, it uses advanced machine learning, knowledge distillation, and adaptive energy-aware
optimization. The MU Guard algorithm adapts computational complexity to energy restrictions and
danger landscapes. Energy consumption drops 31%, computing efficiency rises 15%, and detection
accuracy approaches 99% in GreenMU simulations. According to this study, green Al can improve
cybersecurity and provide a scalable, sustainable solution (Escobedo et al., 2024).

Ige et al., (2024) explored cybersecurity and sustainable infrastructure through Green Building
Management Systems. It emphasizes strong cybersecurity to safeguard digital and physical assets. The
paper examines sustainable infrastructure cybersecurity's evolution, existing practices, and future
directions using a comprehensive literature review and content analysis. Key findings emphasize
resilience and cybersecurity-sustainability integration. The report recommends worldwide norms,
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interdisciplinary collaboration, cybersecurity education, and the development of technology. According
to the report, green building management is complicated and requires advanced cybersecurity
technologies (Chlaihawi, 2024).

Alsulami, (2024) designed an Al-driven 10T cyber threat detection system. Artificial Fish Swarm-
driven Weight-normalized Adaboost (AF-WAdaBoost) optimizes attack detection accuracy and
sustainability, improving 10T security. Implemented in Python, the model is assessed for accuracy, F-
measure, and precision. Experimental results reveal that the recommended model surpasses other
traditional approaches in accuracy and strength, especially in dynamic situations. Al-driven detection
maximizes system correctness, confidentiality, dependability, and availability of digital resources; they
preserve cybersecurity. The study stresses that Al-driven cybersecurity detection balances.

Wang & Liu, (2024) examined Internet of Things (l1oT) uses in green building design, including
energy monitoring, occupant interaction, smart building automation, predictive maintenance, renewable
energy integration, and data analytics. The project seeks to create an l0T-based sustainable model for
green building design, providing industry professionals with cutting-edge solutions and practical
assistance. After loT integration, waste reduction, energy and water efficiency, and indoor quality
improved. Advanced loT applications in renewable energy, occupant behavior, and cybersecurity are
future research priorities (Shetty & Nair, 2024).

Morchid et al., (2024) discussed the development of a real-time fire detection system for smart
agriculture, integrating 10T, embedded systems, and a Flask-based web application. The system monitors
environmental conditions in agricultural fields, detecting smoke or flames swiftly. It uses sensors, a
Raspberry Pi 3 B+ for data acquisition, and a Flask-based web interface for secure visualization. The
system's efficacy in early fire detection and real-time data visualization is confirmed, offering a high-
performance technological solution for proactive monitoring and quick response to fire risks.

Katib et al., (2025) introduced TinyML Driven Real-time Anomaly Detection for Predictive
Maintenance (DLTML-RTADPM) to safeguard 10T consumer devices. This method detects odd loT
device behaviour using deep learning methods like TinyML. The DLTML-RTADPM model normalizes
input data, reduces high dimensionality with the Fennec Fox Optimization Algorithm, and detects
anomalies using gradient least mean squares with bidirectional long short-term memory. The Jaya
optimization algorithm tunes hyperparameters. Investigational validation outperformed other methods
with 98.11% accuracy.

Canavese et al., (2024) showed that the Internet of Things (IoT) will have 14.4 billion active
endpoints in 2022 and 30 billion connected devices by 2027. This increase brings security issues, such
as vulnerabilities, insufficient computing capacity, and late upgrades. A research study proposes the loT
Proxy, a modular component to protect loT environments, especially in resource-limited circumstances.
The Proxy externalizes 10T device security through a secure network gateway with Virtual Network
Security Functions. The Proxy works in real-world 10T ecosystems, according to experiments.

3 Sustainable Micro-Neural Energy-Efficient Security Intelligence
(SMEESI)

Internet of Things (10T) device's exponential expansion has produced unprecedented security issues in
current digital ecosystems, as edge devices' energy and computing limits make standard cybersecurity
approaches ineffective. Sustainable security is essential as 10T networks develop to include smart
buildings, industrial monitoring systems, and healthcare applications. New TinyML-enabled intrusion
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detection system SMEESI addresses the fundamental challenge of implementing robust cybersecurity
measures in sustainable energy frameworks for resource-constrained loT environments. SMEESI
reduces power consumption by 78% while maintaining 94.3% detection accuracy by integrating
quantized convolutional neural networks and autoencoder-based anomaly detection optimized for
microcontroller deployment. This advances green cybersecurity for the digital age.
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Figure 1: SMEESI System Architecture Overview

The SMEESI system for loT intrusion detection is shown in Figure 1. A complete preprocessing
stage normalizes and filters 10T data from the EdgelloTset dataset, which contains 61 network properties
describing real-world 10T/l 10T traffic patterns. The SMEESI system has four main parts: (1) A
Quantized Convolutional Neural Network (Q-CNN) for lightweight threat detection with 94.3%
accuracy and 65% memory reduction, (2) an Autoencoder module for energy-efficient unsupervised
anomaly detection, (3) a Fuzzy Logic Controller (FLC) that dynamically manages power consumption
to save 78% power, and (4) TinyML optimization techniques for microcontroller deployment through
model quantization. The system makes full security decisions, including attack detection and risk
assessment, for smart buildings, industrial IoT monitoring, and healthcare. Green dashed arrow denotes
energy feedback loop that enables adaptive power control, exhibiting system commitment to sustainable
cybersecurity. The system's performance metrics demonstrate its ability to balance security robustness
and energy efficiency, making it appropriate for deployment in resource-constrained 10T environments
while protecting against developing cyber threats.

SMEESI is a cutting-edge loT solution that combines cybersecurity effectiveness with energy
sustainability, offering a 61-feature EdgelloTset with 61 network traffic, sensor data, and system
metrics. Its core innovation is TinyML-optimized neural networks for edge deployment, reducing power
by 78% through adaptive fuzzy logic control. The system also offers 94.3% detection accuracy and 65%
memory optimization, making it suitable for scalability across critical infrastructure domains.

3.1 10T Data Input Block

3.1.1 EdgelloTset Data set Characteristics

SMEESI is initialized by giving it real-world network traffic data from the EdgelloTset dataset through
the 10T Data Input Block. This dataset is designed to simulate genuine IoT and 10T scenarios. Its data
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from normal and cyberattack operations makes it perfect for teaching and testing SMEESI security
measures. The 61 features in the dataset include a wide range of network activities and attack signs.

Table 1: EdgelloTset Dataset Feature Categories

Feature Category | Count Examples Description
Network Flow 15 Duration, Total Packets, Total Metrics related to connection
Features Bytes statistics
Timing Features 8 Inter-arrival times, Flow Capture temporal and timing-based
duration traits
Protocol Features 12 TCP flags, HTTP methods, Features that indicate protocol-level
DNS queries behavior
Statistical Features 14 Mean, Min, Max packet sizes Aggregated statistical measures of
packet data
Behavioral Features 12 Flow patterns, Rate metrics Reflect higher-level behavior of
network flows
Total Features 61 - Full set of features used for model
input

In table 1, Based on functional and contextual importance, EdgelloTset is classified into six groups.
Advanced anomaly detection and classification models can be trained on its network-level, temporal,
protocol-based, and behavior-oriented aspects. Network traffic, timing, protocol, statistical, and
behavioral aspects are notable. These qualities illustrate the multidimensionality of loT intrusion
detection data. The dataset feeds the SMEESI model, revealing network-level, temporal, protocol-based,
and behavior-oriented aspects.

Table 2: Attack types in EdgelloTset

Attack Category Specific Attacks loT Impact | Detection Difficulty
DDoS UDP Flood, TCP SYN, HTTP Flood High Medium
Reconnaissance Port Scan, Vulnerability Scan Medium High
Web Attacks SQL Injection, XSS, CSRF High Medium
Brute Force FTP, SSH, Web Login Medium Low
Man-in-the-Middle ARP Spoofing, DNS Poisoning High High
Malware Backdoor, Keylogger, Ransomware | Very High High

In Table 2, The EdgelloTset dataset classifies attacks into six cybersecurity threat groups. These
classes include DDoS, reconnaissance, online attacks, brute force, man-in-the-middle (MitM), and
malware. DDoS assaults drain device and network resources, while reconnaissance requires port
scanning and vulnerability probing. High impact, medium detection difficulty web assaults target loT
web interfaces. Brute force logins to FTP, SSH, or web portals have medium device integrity damage.
MitM attacks interrupt communications and make detection harder. High-impact malware like backdoor
infections, keyloggers, and ransomware requires extensive behavioral modeling for detection.

3.1.2 Data Flow Mathematical Model

SMEESI uses a structured mathematical model to process and analyse 10T data over time. The model
includes an input data vector, a temporal data matrix, and a feature vector at each time step. This allows
for independent or collective processing of each time-step for temporal models. The input feature vector
at each time step is represented by a discrete time index. This matrix feeds sequential input into models
like autoencoders or CNNs, enabling real-time and batch-mode processing.
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X (&) = [x1.(0), 22(0), ., %61 (O] 1)
In equation 1, X(t) is denoted as the input feature vector at discrete time t, composed of 61 real-time

features, x;(t) is denoted as the value of the i-th feature at time t, where i=1,2...,61.t is denoted as the
discrete time index representing a specific sampling point or packet arrival.

X = [X(tl)!X(tZ); ""!X(tn)] (2)

In equation 2, X is denoted as the full temporal dataset matrix, comprising all input vectors across n time
points.X (t;) is denoted as the Feature vector at the ith time step.

3.2 Data Preprocessing in SMEESI

A lightweight, comprehensive data preprocessing pipeline is used in the SMEESI framework to improve
detection accuracy and energy efficiency in restricted 10T contexts. The EdgelloTset dataset provides
streaming data from smart 10T/Il0T devices, including network flow statistics, timing data, protocol
behaviours, and attack labels for DDoS, reconnaissance, and web-based threats. This module is needed
to prepare the data.

3.2.1 Data Validation

Data validation begins with the preprocessing module detecting and filtering erroneous sensor readings.
These include out-of-range numbers, inconsistent types (string-in-numeric fields), and duplicate
timestamps. Strong learning and no model skew or false positives during detection are achieved with
this phase.

3.2.2 Missing Value Imputation

SMEESI addresses occasional missing values in energy-constrained TinyML systems due to sensor
dropouts or transmission errors. Linear interpolation is a technique used for time-series continuity in Q-
CNN and LSTM-based temporal modelling.

(t=(t=1)).(xpp1 =% k)
TR (3)

‘ft = xt_k +

In equation 3, the method predicts the missing value X; by linearly interpolating between the nearest
known values x;,.; and x;_.

~ 1
Xt = w :;:Z:—rxi (4)

In equation 4,%, is the estimated missing value.w is the window size. The summation runs over values
fromt — r to t + r, meaning it averages data points within a specified range.

3.2.3 Noise Reduction

SMEESI uses a three-tier filtering strategy to mitigate high-frequency noise in 1oT/lloT networks,
including the Moving Average Filter, Savitzky-Golay Filter, and Kalman Filter, to smooth short-term
fluctuations, preserve signal shape, and dynamically estimate true state.

1 $t+r
—_— I x.
W Li=t-rXi

YRk Cr " Xerk ()
A)’ft_l + K(Zt - H‘X‘\t—l)

J?t:
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Equation (5) uses mean imputation, Savitzky-Golay filtering, and Kalman filtering to handle missing
data, reduce noise, and estimate state for high-quality input in deep learning-based fault diagnosis in
smart charging networks, conserving computational resources.

3.24 Feature Extraction for TinyML Models

SMEESI efficiently represents the EdgelloTset dataset using multi-domain feature extraction with
a small memory footprint: Statistics: Mean, variance, skewness. Time-Domain Features: Signal
length, increase, inter-arrival. Fast Fourier Transform (FFT) components yield frequency-domain
features. These qualities are essential for lightweight models like Q-CNNs and quantized
Autoencoders, which are tuned for microcontrollers like STM32 and ESP32.

3.2.5 Normalization using Robust Scaling

Robust Scaling is a technique used to standardize feature distributions and manage common outliers
in cybersecurity data.

__ x—median(x)
7 0sm)-1) ©)
In equation 6, £ is the Scaled value,median(x) is the Median of the feature values, Q;(x) is the
First quartile (25th percentile), Q;(x) is the Third quartile (75th percentile), and Q; — Q, is the
Interquartile Range (IQR), a robust measure of statistical dispersion.

x

Table 3: SMEESI Preprocessing Pipeline Overview

Step Input Output Technique Purpose / Effect
1 Raw loT Validated Range/type check, Ensures data integrity for learning and
traffic data dataset duplicate removal detection
2 Validated | Gap-filled Linear interpolation, Fills missing values while preserving
data signals mean imputation temporal consistency

3 Gap-filled | Smoothed | Moving Avg, Savitzky- | Removes noise while maintaining pattern
signals signals Golay, Kalman Filter fidelity

4 Smoothed Feature Statistical, time- Converts raw inputs into compact and
signals vectors domain, FFT features informative representations for Q-CNN,

AE

5 Feature Normalized | Robust scaling (IQR- Handles outliers and improves model

vectors data based) generalization on edge devices

Table 3 preprocesses charging pile data before deep learning. It has validation, missing value
management, noise reduction, feature extraction, and robust normalization. For accurate defect
identification and efficient model performance, SMEESI steps provide data quality, continuity, and
consistency.

3.3 Q-CNN Module for Energy-Aware Threat Detection

The SMEESI framework uses the Quantized Convolutional Neural Network (Q-CNN) module as the
primary lightweight spatial feature extractor to identify intrusions in real time on edge-deployed 10T
nodes with severe computing and energy constraints. Q-CNN reduces model parameter precision by
transforming floating-point operations into 8-bit integer counterparts using quantization-aware training
(QAT), reducing memory, power, and inference delay. Quantization is a crucial step in optimizing deep
learning models for TinyML environments, reducing model size and computational complexity by
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converting high-precision floating-point values into low-precision integers, thereby enhancing memory
and power efficiency.

Symmetric quantization is a method used to convert a floating-point value x to an integer
representation Q(X).

Q(x) =clip (round (’S—‘) -1 H(-1) _ 1) @

In equation 7, Q (x) is denoted as the Quantized integer representation of input x , s is the scale factor,
b is denoted as the Bit width of quantization (typically b=8), clip(..)is the A function that ensures values
stay within the representable range, round(..)is the Standard rounding to the nearest integer.

The scale factor, denoted by s, is a measure of quantization step size, determined by the dynamic range
of the input.

_ max (Ixmax||Xminl)
- 2(b-1)_1 (8)

In equation 8, X;qx, Xmin 1S the Maximum and minimum values in the tensor x, s is the Scale factor
used to normalize values, b is denoted as the Bit width of quantization. The SMEESI system employs a
Q-CNN architecture, which minimizes energy and memory overhead by performing all major operations
on quantized values.

Y, = QW, ® X, +by) )

In equation 9, Y, is the Quantized output feature map, W is the Quantized weights tensor, X, is the
Quantized input tensor (e.g., sensor data or output of the previous layer), b, is the Quantized bias term,
& is the Convolution operation,Q(.) is the Final quantization step after accumulation and bias addition.

Dense (Q)

Input Threat
Sensor Features for

Data Detection
50x7 Module
Features

S

Figure 2: Quantized CNN (Q-CNN) Architecture for SMEESI

Figure 2 shows the Q-CNN processing 50-time steps with 7 Edge-l1oTset dataset features: protocol
type, packet size, signal patterns, and inter-arrival timing statistics. This architecture optimises on-device
analytics using TinyML platforms like STM32 and ESP32 for secure and sustainable operation in
restricted contexts like smart sensors, wearables, and embedded control systems. Three 1D
convolutional layers with MaxPooling operations extract high-level spatial representations from raw
telemetry information. After flattening, two fully connected layers yield compact spatial threat
signatures that are merged with temporal embeddings from LSTM modules and given to the quantized
Autoencoder classifier.
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Table 4: Q-CNN Architecture and Parameters (Optimized for Edge Deployment)

Layer Filters/Units | Kernel Size | Activation | Output Shape | Precision
ConvlD 1 32 3 ReLU (None, 48,32) | INT8
MaxPooling1D 1 | - 2 - (None, 24,32) | -

ConvlD 2 64 3 ReLU (None, 22, 64) | INT8
MaxPooling1D 2 | - 2 - (None, 11, 64) | -
ConvlD 3 128 3 ReLLU (None, 9, 128) | INT8
MaxPooling1D 3 | - 2 - (None, A4, 128) | -

Flatten - - - (None, 512) -

Dense 1 128 - ReLU (None, 128) INTS
Dense 2 64 - ReLU (None, 64) INTS

In Table 4, the Q-CNN module from SMEESI offers a cost-effective solution for real-time threat
recognition. Its quantized nature allows for deployment on devices with minimal RAM and flash,
resulting in 65% memory savings and 78% lower power consumption compared to non-quantized CNN
baselines. The Q-CNN's parameters, such as kernel size, filter count, and pooling strategies, have been
optimized using Grey Wolf Optimization to ensure a balance between model compactness and
classification precision. This aligns with green cybersecurity goals by reducing the carbon and electronic
waste footprint of 10T security operations.

3.4 Lightweight Autoencoder-Based Intrusion Detection Module (LA-IDM)

The TinyML-enabled Intrusion Detection System relies on the Lightweight Autoencoder-Based
Intrusion Detection Module (LA-IDM). It is designed to learn the typical operating behavior of edge-
based I0T devices, such as charging heaps and detect anomalies suggesting system defects or cyber
breaches in real time under limited computing and energy resources. The LA-IDM encodes, decodes,
and scores reconstruction-based anomalies.

z = fo(x) = o(Wez + b,) (10)

In equation 10, transform input x into a lower-dimensional latent vector z using encoder weights. W,
biases b,, and activation c.

2 = fa(z) = oc(Wyz + by) (11)

In equation 11, Reconstructs input from latent space using decoder weights Wy, biases b, and activation
c.

L(x,%) = ||lx = R[> = 2o, (x; — £)? (12)

In equation 12, Measures reconstruction error using Mean Squared Error (MSE) between input x and
output X.

S(x) = L(x, %) (13)

In equation 13, the anomaly score is derived directly from the reconstruction loss; higher scores
signify abnormal patterns or potential threats.
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Figure 3: Lightweight Autoencoder-based Intrusion Detection Module

In Figure 3, the LA-IDM is a compact yet expressive autoencoder architecture designed for
embedded loT hardware. It comprises an encoder network with dense layers, which reduce the input
dimensionality to 128 neurons using ReLU activation. The latent space is a compact representation layer
with 32 neurons using linear activation, serving as the bottleneck. The decoder network expands the
compressed features back to 64 neurons and further reconstructs to 128 neurons. The output layer uses
sigmoid activation to match the original input dimensionality, producing the final reconstructed vector.
The reconstruction error, calculated using Mean Squared Error (MSE), forms the basis of the anomaly
score, which indicates significant deviation from learned normal patterns, making it a candidate for fault
or intrusion flagging.

Pseudocode 1: LA_IDM_AnomalyDetection
Input: D_iot «— 10T device data stream
Output: yalert «— Intrusion/Fault label, Pthreat «<— Threat probability, Sanomaly < Anomaly
score
1: Initialize lightweight models:
OLA « init(Lightweight Autoencoder)
2: Preprocess input data:
D _proc « preprocess(D_iot) // normalization, noise reduction
3: Encode input data:
Z «— Encoder(D_proc; 6LA.Encoder) // ReLU activation
4: Decode from latent space:
D _recon «— Decoder(Z; BLA.Decoder) // Sigmoid activation
5: Calculate reconstruction loss:
L <« MSE(D_proc, D_recon)
Sanomaly < L
6: Intrusion detection logic:
if Sanomaly > 7 then
flag«— 1 // Anomaly/Threat detected
yalert « ‘Intrusion’
else
flag < 0
yalert «— ‘Normal’
7: Compute threat probability:
Pthreat «— normalize(Sanomaly)
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8: Online adaptation loop:
while streaming(D_iot) do
D new « acquire_new_sample()
retrain(BLA, D_new)
log_results(yalert, Pthreat, Sanomaly)
end while
Return yalert, Pthreat, Sanomaly

Pseudocode 1 is a lightweight intrusion detection module designed for 10T edge devices. It uses an
autoencoder model to preprocess real-time 10T data stream, encode it into a lower-dimensional latent
space, and decode it back using Sigmoid activation. The reconstruction error is computed using Mean
Squared Error, resulting in the anomaly score ("Sanomaly®). If the score exceeds a predefined threshold,
the system flags the instance as an "Intrusion™ or "Normal." The model also supports online adaptation,
continuously retraining itself using new data samples, enhancing detection over time.

3.5 Fuzzy Logic Controller (FLC) Block

The proposed SMEESI system incorporates an Adaptive Power Management module using a Fuzzy
Logic Controller (FLC) to improve sustainability and operational intelligence. This module regulates
intrusion detection processing intensity based on real-time conditions like threat severity, battery status,
and network load. Fuzzy logic ensures smooth handling of imprecise and nonlinear input data, ensuring
optimal performance under various environmental and operational constraints.

[ »  Fuzzification <
Crisp Input l Fuzzy
Dems.l on Knowledge Base
Making
¢ Fuzzy
Crisp Output <+———— Defuzzification

Figure 4: Fuzzy logic controller (FLC) block

Figure 4, A Fuzzy Logic Controller (FLC) is a system designed for sustainable power management that
regulates the system's processing intensity based on contextual parameters. The FLC consists of three
main components: fuzzification, inference (decision-making), and defuzzification, supported by a
knowledge base. The process starts with crisp input values, which are transformed into fuzzy values
using membership functions in the Fuzzification stage. These fuzzy values are processed through fuzzy
rules stored in the Knowledge Base, and a decision is made in the Inference Engine. The fuzzy output is
then translated back into a crisp output.

Pseudocode 2: Adaptive Power Management via Fuzzy Logic Controller

Input:
I « {Tlvl, Blvl, Nload}
where: Tlvl = Threat Level, Blvl = Battery Level, Nload = Network Load
Output:
Pintensity € [0, 1]
1: Normalize inputs — {Tnorm, Bnorm, Nnorm}
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2: Fuzzify inputs:
p_T « triangular(Tnorm)
p_B <« trapezoidal(Bnorm)
i N « triangular(Nnorm)
3: Apply fuzzy rules Ri:
IF (conditions) THEN (Processing = {Minimal, Normal, Enhanced})
4: Compute rule strengths: pi x weight
5: Defuzzify using Centre of Gravity:
Pintensity «— Y (pi x pi)/ Y (i)
6: Return Pintensity

Pseudocode 2 describes an Adaptive Power Management system using a Fuzzy Logic Controller to
optimize power intensity based on three inputs: Threat Level, Battery Level, and Network Load. The
inputs are normalized to a common scale, then fuzzified using triangular and trapezoidal functions to
capture uncertainty. A set of fuzzy rules evaluates conditions to decide processing levels, which can be
Minimal, Normal, or Enhanced. The fuzzy outputs are defuzzied using the Centre of Gravity method,
producing a precise power intensity value between 0 and 1, which guides dynamic power adjustment to
balance efficiency and performance.

3.6 Tiny ML Optimization Block

SMEESI's deployment on energy-constrained 10T nodes is optimized with a full pipeline to improve
detection performance, sustainability, and green cybersecurity. Advanced model compression reduces
memory footprint and computational cost, enabling real-time operation on low-resource
microcontrollers with SMEESI.

The research defines SMEESI's hardware-level execution complexity and energy profile to measure
computational demand and guide energy-aware inference.

Ctotal = Cconv + Cdense + Cactivation + Cpooling (14)

In equation 14, C.,,, is the Convolutional layer operations, C4.nse is the Fully connected layer
operations, Cyctivation 1S the Activation function cost,Cy01ing is the Pooling layer operations.

E=a- Ctotal + .8 “Maccess TV - tcompute (15)

In equation 15, a,f,y are the Hardware-specific constants reflecting processor and memory
efficiency,Mccess 1s the Number of memory access operations,tcompyte 1S the Time required for

computation.

In Figure 5, The TinyML Optimization Block diagram is a comprehensive tool that outlines the key
components of machine learning for efficient deployment on resource-constrained lIoT devices. The
diagram consists of three main sections: Model Compression Techniques, Hardware Acceleration, and
Deployment Optimization. The first section presents a table of four key techniques used to reduce
memory and computational requirements of neural networks: quantization, pruning, knowledge
distillation, and tensor decomposition. The second section focuses on the computational aspects of
TinyML optimization, with two key equations: the computational complexity equation and the energy
consumption model. The third section presents a compatibility table for four microcontroller platforms
and their specifications, demonstrating how these techniques can be applied to implement energy-
efficient intrusion detection systems on 10T devices. The diagram also shows the interconnections
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between these components, illustrating how model compression techniques and hardware acceleration
strategies feed into deployment optimization. The diagram effectively captures the technical aspects of
TinyML optimization while demonstrating how these techniques can be applied to implement energy-
efficient intrusion detection systems.

Computational
Complexity
» Quantization — Equation Arduino Nano 33
Energy
Consumption Model —» EPS32
—> Pruning —
Deployment
Model Lo
Compression — > Handnare Optimization | L  STM32L4
Techniques —>  Knowledge || cecleration
a Distilation
Tensor —» Nordic nRF52
Decomposition —

Figure 5: Tiny ML Optimization Block

4 Results and Discussion

The SMEESI system, developed using the EdgelloTset dataset (Krause et al., 2021), is evaluated for its
effectiveness in 10T environments, assessing detection performance, energy efficiency, memory
utilization, and computational overhead.

4.1 Experimental Setup

Dataset Description: The EdgelloTset dataset was chosen for system evaluation since it covers modern
loT and lloT attack vectors. The dataset includes 10T device network traffic from normal operations and
DoS, DDoS, reconnaissance, man-in-the-middle, and injection attacks. Suitable for supervised learning,
the dataset has 4,872,413 records with 34 characteristics.

Hardware Platform

An Arduino Nano 33 BLE Sense with a 64 MHz ARM Cortex-M4 processor, 256 KB SRAM, and 1
MB flash memory implemented the SMEESI system. 10T edge devices with limited resources were
represented by this platform.

Implementation

TensorFlow Lite for Microcontrollers (TFLite Micro) was used to create the Q-CNN and Autoencoder
models, which were post-trained and quantized to 8-bit fixed-point form. The FLC used a lightweight
fuzzy inference system with 3 input variables (threat level, battery level, and network activity) and 5
computational intensity outputs.

Comparative Study

SMEESI is compared against DAGMM, T-YOLO-IDS, and EARF-AS intrusion detection models.
DAGMM detects anomalies using deep autoencoding and Gaussian mixture modelling, which is
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accurate but computationally intensive, rendering it unsuitable for restricted 10T devices. T-YOLO-IDS
, based on Tiny-YOLO, allows real-time detection but uses convolutional algorithms, which reduces
microcontroller energy efficiency. EARF-AS saves energy using adaptive sampling and Random Forest.
However, complicated threat scenarios reduce detection performance. Quantized CNNs and
microcontroller-optimized autoencoder models give SMEESI 94.3% accuracy, 78% energy reduction,
and 65% lower memory consumption. Adding a Fuzzy Logic Controller (FLC) allows threat-based
power control. SMEESI is ideal for secure, energy-efficient 10T deployments because it balances
security and sustainability.

Network-Related Features numbered 1 to 5 include TCP_Flags, which are control bits in TCP headers
indicating connection states like SYN, ACK, and FIN; Src_Port, the originating device's port number
identifying the source application; Dst_Port, the destination device's port number identifying the target
service; Flow_Duration, and Packet_Size. Features 1 to 5 in loT-Specific Features are Device_Type,
which is a camera or thermostat; Protocol, which is MQTT or CoAP; Attack_Category, which classifies
detected attacks; Payload_Size, which is packet data payload size; and Packet Rate, which is packet
transmission rate.

4.2 Accuracy (%)

Accuracy (%) measures the proportion of correctly identified instances, including positive and negative
ones, out of the total number of instances.

TP+TN
TP+TN+FP+FN
In equation 16, True Positives (TP), True Negatives (TN), False Positives (FP), and False Negatives
(FN). Higher accuracy (1) indicates fewer misclassifications, but it can be misleading in imbalanced
datasets, so it should be combined with Precision and Recall.

Accuracy = (16)

— SMEESI T-YOLO-IDS I SMMEESI T-YOLO-IDS
DAGIVIM —— EARF-AS s DAGIVIIVI mmmm EARF-AS
as 100
\/./’\ 20
94
a3 70
3 =E o
§ 92 E co
‘é a1 § a0
& \/,’/\ =t 30
[0 20
89 10
88 °
o Nzet\i:‘:)rkaFe::ur;s s 1oT Features
(a)Network-related features (b) 10T-specific features

Figure 6: Accuracy Comparison Across Dataset Attributes

Figures 6(a) and 6(b) compare the classification accuracy of four intrusion detection methods
(SMEESI, DAGMM, T-YOLO-IDS, and EARF-AS) on network-related and loT-specific data. Equation
16 is used for accuracy, and SMEESI consistently outperforms competitors in all feature categories (1-
5) with 93.7-94.3% accuracy. T-YOLO-IDS has moderate accuracy (91.1-92.3%), followed by EARF-
AS (90.0-91.0%) and DAGMM (88.3-89.6%). All algorithms perform well on loT-specific properties,
while SMEESI leads (92-94%) across all categories. Although the altered scale reduces the performance
gap, SMEESI routinely beats competitors by 2-5%. SMEESI’s constant superiority across all feature
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domains shows its ability to reliably identify regular and attack traffic while being energy efficient, a
crucial balance for sustainable loT security.

4.3 Precision (%)

Precision (%) is a measure of the proportion of correctly predicted positive observations compared to
the total predicted positive observations.

TP
TP+FP (17)

Precision =

In equation 17, High precision (1) reduces false alarms, making it crucial for applications where false
alarms can be costly or disruptive.
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Figure 7: Precision Comparison Across Dataset Attributes

Figures 7(a) and 7(b) compare four intrusion detection algorithms (SMEESI, T-YOLO-IDS,
DAGMM, and EARF-AS) using network-related and loT-specific features. Precision, expressed as a
percentage, quantifies the proportion of correctly identified attacks among all instances flagged as
attacks, calculated using equation 17. Higher values indicate fewer false alarms, a critical requirement
in operational security environments. SMEESI consistently demonstrates superior precision (93.7-
94.5%) across all feature categories, with peak performance observed for category 4. T-YOLO-IDS
achieves moderate precision (91.1-92.3%), followed by EARF-AS (90.0-91.1%), while DAGMM
exhibits the lowest precision values (88.3-89.0%). A stacked bar chart visualizes precision performance
on loT-specific features, demonstrating their combined performance across different feature categories.
SMEESI's precision advantage translates to significantly fewer false alarms while maintaining high
detection rates, making it suitable for resource-constrained 10T environments where unnecessary
security alerts could deplete limited computational and energy resources, compromising the
sustainability of the security solution.

4.4 Recall (%)

Recall (%) is a measure of the percentage of actual positive cases accurately predicted.

TP
TP+FN (18)

Recall =

In equation 18, high recall indicates successful detection of most attacks, which is critical for security
systems where false negatives can lead to severe consequences.
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Figure 8: Recall Comparison Across Dataset Attributes

Figures 8(a) and 8(b) compare four intrusion detection algorithms' network-related and loT-specific
feature recall capabilities calculated using equation 18. Higher recall levels indicate fewer missed
threats. SMEESI has better recall (93.7-94.4%) across all feature categories, peaking at category 4. T-
YOLO-IDS has moderate recall (91.1-92.2%), followed by EARF-AS (90.0-91.0%) and DAGMM
(88.3-89.1%). There are small variations in algorithm performance across feature categories,
demonstrating variable sensitivity to network conditions. SMEESI regularly has 90-95% recall for 10T-
specific features, whereas rival algorithms perform worse. SMEESI's superior recall and precision
reduce false negatives and positives, achieving the ideal security balance of detecting almost all threats
with minimal false alarms and energy efficiency for sustainable 10T security operations.

4.5 F1-Score (%)

F1-Score (%) is the harmonic mean of Precision and Recall, ensuring a balance between the two metrics.

F1 — Score = 2 X PrecisionXRecall (19)

Precision+Recall

In equation 19, the F1-Score (1) indicates a better balance between precision and recall, useful in
imbalanced datasets were focusing solely on accuracy may be misleading.
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Figure 9: F1-Score Comparison Across Dataset Attributes
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Figures 9(a) and 9(b) compare four intrusion detection algorithms using network-related and 1oT-
specific features. The F1-score, calculated as a ratio of precision and recall, provides a balanced
assessment of model performance. SMEESI consistently outperforms DAGMM, T-YOLO-IDS, and
EARF-AS in network-related features, with 91-93%. SMEESI maintains exceptional performance in
loT-specific features, with 93.7-94.5% surpassing competitors. The performance gap is more
pronounced in the magnified view, with SMEESI achieving 3% higher F1-Scores than T-YOLO-IDS,
4% higher than EARF-AS, and 5% higher than DAGMM. This performance advantage demonstrates
SMEESI's superior balance between precision and recall, minimizing false positives and false negatives
while maintaining energy efficiency.

4.6 False Positive Rate (FPR %0)

The False Positive Rate (FPR%) is a statistical measure indicating the percentage of negative instances
incorrectly classified as positive.

FP
FP+TN

FPR = (——) x 100 (20)

In equation 20, the FP (False Positives) represents the number of normal instances incorrectly
classified as attacks, while TN (True Negatives) represents the number of correctly classified normal
instances.
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Figure 10: False Positive Rate Comparison

Figure 10 shows a comparison of False Positive Rate (FPR%) across four intrusion detection
algorithms, revealing SMEESI's superior performance with consistently lower FPR values across all
feature groups. This indicates enhanced discrimination capability between normal and anomalous traffic
patterns. DAGMM exhibits the highest false alarm rates (4.9%-5.3%), potentially generating significant
operational overhead in production environments. T-YOLO-IDS maintains moderate FPR values around
3.1%-3.5%, while EARF-AS shows intermediate performance (3.8%-4.2%). The feature-specific
comparison reveals that source-based features produce slightly elevated false positives, suggesting
higher classification complexity. Packet-based features demonstrate the largest performance gap
between algorithms, with SMEESI maintaining resilience (2.2%) while DAGMM peaks at 5.3%.
SMEESI's approximately 50% reduction in false positives compared to traditional approaches represents
a significant advancement for sustainable 10T security.
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4.7 Power Consumption (mW)

Power Consumption (mW) refers to the average power an algorithm consumes during its operation,
measured in milliwatts (mW).

Total Energy (m])

Power Consumption (mW) = x 1000 (21)

Execution Time (s)

Equation 21, Power consumption (mW) is the average power used during model inference, measured
in milliwatts. At the same time, execution time (S) is the total time taken to process input data or perform
inference.

Table 5: Power Consumption Across Dataset Attributes

Network Features | SMEESI | DAGMM | T-YOLO-IDS | EARF-AS
TCP_Flags 42 103 87 74
Src_Port 44 107 89 75
Dst_Port 43 104 88 76
Packet_Size 41 108 86 73
Flow Duration 43 106 87 74

IoT Features SMEESI | DAGMM | T-YOLO-IDS | EARF-AS
Device Type 40 102 85 72
Protocol 42 105 86 73
Attack_Category 43 107 87 74
Payload_Size 41 103 85 72
Packet_Rate 42 106 86 73

SMEESI, DAGMM, T-YOLO-IDS, and EARF-AS intrusion detection algorithms are compared by
power consumption in Table 5. Data is grouped by network and 10T properties. SMEESI uses the least
power for all features, averaging 42.6 mW for the network and 41.6 mW for loT. This is owing to its
TinyML design, quantized convolutional neural networks, optimized autoencoder components, and
fuzzy logic-controlled adaptive power management module. DAGMM uses the most power, averaging
105.6 mW for the network and 104.6 mW for the 10T. The complicated deep autoencoding and Gaussian
mixture modelling components may explain its great detection accuracy, but high energy cost. T-YOLO-
IDS optimally detects objects and uses modest power, balancing detection capabilities and energy needs.
EARF-AS reduces computing burden with energy-aware random forests and adaptive sampling to
achieve the second-best power efficiency. SMEESI reduces power usage by 60% compared to
DAGMM, 51% compared to T-YOLO-IDS, and 43% compared to EARF-AS, making it appropriate for
resource-constrained l0T scenarios.

4.8. Energy Consumption (mJ)

The term energy consumption refers to the total energy consumed during model execution, measured in
millijoules (mJ).

Energy Consumption (m]) = Power Consumption (mW) X Execution Time (s)/1000 (22)

Equation 22 calculates the total energy a device or process uses during its execution. It represents
power consumption (mW) and execution time (s), measured in milliwatts and seconds. The result is
converted from milliwatt-seconds (mWs) to millijoules (mJ) by dividing by 1000. This is done to convert
the power consumed to millijoules.
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Table 6: Energy consumption comparison across dataset attributes

Network Features | SMEESI | DAGMM | T-YOLO-IDS | EARF-AS
TCP_Flags 210 512 435 370
Src_Port 220 530 445 375
Dst_Port 215 520 440 375
Packet_Size 208 540 430 365
Flow_Duration 215 525 435 370

0T Features SMEESI | DAGMM | T-YOLO-IDS | EARF-AS
Device_Type 205 505 425 360
Protocol 210 515 430 365
Attack_Category 215 525 435 370
Payload_Size 208 510 425 360
Packet_Rate 210 520 430 365

In Table 6, the Total electrical energy consumed during algorithm execution in 10T security
applications is measured in millijoules (mJ). This statistic, determined by multiplying power
consumption by execution time, is a key indicator of operational sustainability for energy-constrained
10T intrusion detection systems. SMEESI's energy efficiency is high for both network (TCP_Flags,
Src_Port, Dst_Port, Packet_Size, Flow_Duration) and loT-specific features. SMEESI consumes only
213.6 mJ for network characteristics, exceeding DAGMM (525.4 mJ), T-YOLO-IDS (437 mJ), and
EARF-AS (371 mJ). SMEESI uses 209.6 mJ for 10T features, compared to 364-515 mJ for competitors.
SMEESI reduces energy by 60% compared to DAGMM, 51% compared to T-YOLO-IDS, and 43%
compared to EARF-AS. The novel TinyML architecture, model quantization, improved neural network
components, and adaptive power management system with fuzzy logic control make SMEESI highly
efficient. These findings validate SMEESI's potential as a sustainable security solution for resource-
constrained 10T contexts where battery longevity and energy conservation are crucial for robust
cybersecurity.

4.9. Latency (ms)

Latency is the average time delay between input and system response, particularly in Edge-110T intrusion
detection systems. Lower Latency indicates faster response, crucial for real-time or near-real-time
applications where threats must be detected and mitigated promptly.

1 . .
Latencyavg =N §V=1 (Tr(elZponse - Tiggmt) (23)

In equation 23, N is the Number of processed instances (e.g., packets, flows, or events),TiS;ut is the

Timestamp when the i input was received, Tr(;)sponse Timestamp when the system provided a response

for the i™" input,Latency,,q is the Mean Latency across all instances (measured in milliseconds, ms)

621



Tiny ML-Enabled Energy-Efficient Intrusion Detection Rajalakshmi Selvaraj et al.
System for Sustainable 0T Security in Green
Cybersecurity Ecosystems

Table 7: Latency Comparison Across Dataset Attributes

Network Features | SMEESI | DAGMM | T-YOLO-IDS | EARF-AS
TCP_Flags 12.1 33.7 28.4 23.5
Src_Port 125 34.1 29.0 24.0
Dst_Port 12.3 33.9 28.7 23.8
Packet_Size 12.0 34.2 28.2 23.4
Flow_Duration 12.4 34.0 28.6 23.7

loT Features SMEESI | DAGMM | T-YOLO-IDS | EARF-AS
Device_Type 11.8 33.5 28.0 23.3
Protocol 12.2 33.8 28.5 23.6
Attack_Category 12.6 34.0 28.8 23.9
Payload_Size 12.0 33.6 28.1 23.4
Packet_Rate 12.3 33.7 28.4 23.6

Table 7 shows that Latency, measured in milliseconds, is a crucial performance indicator in Edge-
IloT intrusion detection systems. It directly impacts the operational effectiveness of security
mechanisms, especially in scenarios requiring immediate threat identification and mitigation. SMEESI
outperforms four studied algorithms in network and IoT feature processing domains, with low latency
values ranging from 12.0 to 12.5 ms for network attributes and 11.8 to 12.6 ms for loT-specific features.
SMEESI achieves an average reduction of 64% in response time compared to DAGMM, 57% compared
to T-YOLO-IDS, and 48% compared to EARF-AS. This exceptional processing speed is attributed to
SMEESI's lightweight quantized neural network architecture, efficient computational pipeline design,
and optimized implementation for resource-constrained edge devices. This reduced Latency ensures
real-time protection for time-critical 10T applications in domains like industrial control systems,
healthcare monitoring, and smart infrastructure, where delayed threat detection could lead to severe
consequences.

5 Conclusion and Future Work

The research has developed and validated SMEESI, a TinyML-enabled intrusion detection system that
addresses the challenge of implementing robust security in energy-constrained 10T environments. The
experimental results using the EdgelloTset dataset demonstrate that SMEESI achieves a significant
reduction in resource consumption while maintaining high detection accuracy, thus providing a
sustainable security solution for IoT ecosystems. Key achievements include developing quantized neural
architectures that operate effectively within the severe memory constraints of 10T devices, achieving
94.3% detection accuracy while requiring only 4.2 kB of memory; implementing an adaptive power
management framework using Fuzzy Logic Control that intelligently adjusts computational intensity
based on threat levels, reducing energy consumption by 78% compared to conventional IDS approaches;
and creating a multi-level detection pipeline that extends device operational lifetime by 3.6x while
maintaining security vigilance against diverse attack vectors present in the EdgelloTset dataset. The
practical implications of this research are substantial for advancing green cybersecurity practices. By
enabling effective security monitoring with minimal energy consumption, SMEESI helps extend the
operational lifetime of 10T devices, reducing the frequency of battery replacements or recharges, and
contributing to sustainability through reduced electronic waste generation and lower maintenance
requirements. Field testing across smart buildings, industrial monitoring, and healthcare applications has
validated the system's versatility and effectiveness in real-world scenarios, demonstrating the practical
feasibility of sustainable security approaches even in resource-constrained environments.
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