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Abstract 

Internet of Things (IoT) devices face increasing security threats while operating under severe energy 

constraints. This research addresses the critical challenge of implementing effective cybersecurity 

measures within sustainable energy frameworks for resource-constrained IoT environments. The 

research presents Sustainable Micro-Neural Energy-Efficient Security Intelligence (SMEESI), a 

novel TinyML-enabled intrusion detection system (IDS) that significantly reduces energy 

consumption while maintaining robust security capabilities. The research innovation combines 

lightweight neural network architectures with energy-aware anomaly detection algorithms 

specifically optimized for microcontroller deployment. The SMEESI framework includes an 

adaptive power management module that dynamically adjusts computational intensity based on 

threat levels, achieving energy efficiency without compromising security posture. Performance 

evaluation demonstrates a 78% reduction in power consumption compared to traditional IDS 

implementations while maintaining 94.3% detection accuracy across multiple attack vectors. 

Memory footprint requirements decreased by 65%, enabling deployment on severely resource-

limited IoT sensors and actuators. The system has been successfully tested in smart buildings, 

industrial monitoring, and healthcare IoT applications, proving its versatility across critical 

infrastructure domains. This research contributes to green cybersecurity by enabling sustainable 

security monitoring in IoT ecosystems, extending device battery life, reducing electronic waste 

through prolonged hardware lifecycles, and minimizing the carbon footprint of security operations 

while maintaining essential protection against evolving cyber threats in the digital age. 
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1 Introduction  

The Internet of Things (IoT) has become a significant digital paradigm, with an estimated 27.1 billion 

connected devices worldwide as of 2024. These devices generate 79.4 zettabytes of data annually and 

are used in various sectors (Kulkarni & Angurala, 2024). However, this connectivity has also created a 

vast attack surface, with an average of 5,200 attacks per month and a 300% increase in IoT-specific 

malware variants between 2020 and 2024. IoT devices operate under severe constraints in processing 

capabilities, memory capacity, and energy availability, which presents significant challenges for 

implementing robust security measures (Cano-Suñén et al., 2023). The energy constraints of IoT devices 

also pose a significant challenge for cybersecurity implementation (Krishnan et al., 2020), as they 

operate on limited power sources (Hussain & Qureshi, 2024). Conventional security solutions can 

rapidly deplete these reserves, reducing device operational lifetime by 40-60% (Rekeraho et al., 2024). 

This energy-security tradeoff has forced many IoT implementations to compromise on security 

measures, with 78% of deployed IoT devices remaining vulnerable to known attacks (Rupanetti & 

Kaabouch, 2024). 

The Internet of Things (IoT) security challenges have led to significant research efforts, focusing on 

three main approaches: lightweight cryptographic solutions, rule-based anomaly detection, and edge-

cloud collaborative security frameworks (Zhukabayeva et al., 2025). These approaches offer advantages 

but have limitations (Pandey & Bhushan, 2024). Lightweight cryptographic solutions reduce memory 

footprint and energy consumption but offer limited protection against sophisticated attacks (Chatterjee 

& Chakraborty, 2024). Rule-based anomaly detection systems require minimal resources but suffer from 

poor detection rates and manual rule generation (Suryavanshi et al., 2025). Edge-cloud collaborative 

frameworks reduce on-device resource consumption but introduce new vulnerabilities (Ahmed et al., 

2024). Machine learning has shown promise for IoT security, but conventional models require 

substantial resources, making them unsuitable for resource-constrained IoT environments (Ball & 

Degischer, 2024). This research gap highlights the need for intrusion detection systems that balance high 

detection accuracy, energy efficiency, and adaptability to emerging threats (Abdulganiyu et al., 2024). 

System-wide failures and energy inefficiencies make the IoT security and sustainability research gap 

large (Oliveira et al., 2024). IoT security operations consume 11% of IoT energy, a major environmental 

impact. One interesting approach is TinyML, which implements machine learning algorithms on 

microcontrollers to reduce neural network memory and improve accuracy (Rekeraho et al., 2025; Tan 

et al., 2024). Embedded applications save 40-70% of energy with adaptive computing. TinyML and 

adaptive computing can create intrusion detection systems that balance security and resource use (Tekin 

et al., 2023). The research focuses on developing SMEESI, a TinyML-enabled intrusion detection 

system for energy-constrained IoT ecosystems, to address technical challenges. The primary objectives 

of this research are: 

• To design and implement a TinyML-enabled intrusion detection system (SMEESI) that ensures 

robust security for IoT devices while operating within strict energy and memory constraints. 

• To develop and integrate lightweight neural models, including Quantized Convolutional Neural 

Networks (Q-CNNs) and Autoencoder-based anomaly detection, optimized for microcontroller 

deployment via model quantization. 
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• To enhance system sustainability by incorporating an adaptive power management module using a 

Fuzzy Logic Controller (FLC) that dynamically regulates processing intensity based on detected 

threat levels. 

• To evaluate and validate the proposed system's effectiveness in terms of energy efficiency, detection 

accuracy, memory optimization, and real-world applicability in domains such as smart buildings, 

industrial monitoring, and healthcare IoT. 

• A summary of the research follows. Second section: thorough literature and research 

methodological review. Section 3 covers the study plan, methods, and processing; Section 4 

presents analysis results. Conclusion and future work are in Section 5. 

2 Literature Survey 

Kallimani et al., (2024) demonstrated that IoT and edge computing have increased interest in Artificial 

Intelligence (AI) and Machine Learning (ML). Embedded ML approach TinyML allows applications on 

cheap, resource- and power-constrained devices. Problems including processing capacity optimization, 

dependability, and learning model accuracy necessitate quick answers. The study covers TinyML 

implementation, including background, tools, state-of-the-art applications leveraging advanced 

technologies, and future research problems and directions (Hashemi, 2016). 

Patil et al. used TinyML technology in healthcare, industrial automation, and agriculture to 

demonstrate its potential for using the Internet of Things. However, privacy and security worries are 

mounting. Adversarial, malware, and supply chain threats on TinyML devices are covered in the chapter. 

It also examines encryption, authentication, access control, and intrusion detection systems, their pros 

and cons, and future research (Rishikesh et al., 2022). The study finishes by discussing future TinyML 

security concerns and potential, highlighting the necessity for collaboration between researchers, 

practitioners, and policymakers to establish robust security solutions. 

Tekin et al., (2023) demonstrated that IoT technology has made Smart Home Systems (SHSs) 

popular, but it has been subject to attacks and privacy concerns. Intrusion Detection Systems (IDS) based 

on machine learning are suggested to address these difficulties. Most ML models are trained on cloud 

services, which might slow real-time applications. On-device ML models with local user data seem 

promising. However, these models use plenty of energy. This article analyzes cloud, edge, and IoT 

device-based ML algorithms for IoT intrusion detection. TinyML for tiny IoT devices improves training, 

inference, and power consumption. 

Ranpara et al., (2025) stated that GreenMU is a unique framework for energy efficiency and 

performance in intrusion detection systems. To balance computational efficiency and cybersecurity 

accuracy, it uses advanced machine learning, knowledge distillation, and adaptive energy-aware 

optimization. The MU Guard algorithm adapts computational complexity to energy restrictions and 

danger landscapes. Energy consumption drops 31%, computing efficiency rises 15%, and detection 

accuracy approaches 99% in GreenMU simulations. According to this study, green AI can improve 

cybersecurity and provide a scalable, sustainable solution (Escobedo et al., 2024). 

Ige et al., (2024) explored cybersecurity and sustainable infrastructure through Green Building 

Management Systems. It emphasizes strong cybersecurity to safeguard digital and physical assets. The 

paper examines sustainable infrastructure cybersecurity's evolution, existing practices, and future 

directions using a comprehensive literature review and content analysis. Key findings emphasize 

resilience and cybersecurity-sustainability integration. The report recommends worldwide norms, 
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interdisciplinary collaboration, cybersecurity education, and the development of technology. According 

to the report, green building management is complicated and requires advanced cybersecurity 

technologies (Chlaihawi, 2024). 

Alsulami, (2024) designed an AI-driven IoT cyber threat detection system. Artificial Fish Swarm-

driven Weight-normalized Adaboost (AF-WAdaBoost) optimizes attack detection accuracy and 

sustainability, improving IoT security. Implemented in Python, the model is assessed for accuracy, F-

measure, and precision. Experimental results reveal that the recommended model surpasses other 

traditional approaches in accuracy and strength, especially in dynamic situations. AI-driven detection 

maximizes system correctness, confidentiality, dependability, and availability of digital resources; they 

preserve cybersecurity. The study stresses that AI-driven cybersecurity detection balances. 

Wang & Liu, (2024) examined Internet of Things (IoT) uses in green building design, including 

energy monitoring, occupant interaction, smart building automation, predictive maintenance, renewable 

energy integration, and data analytics. The project seeks to create an IoT-based sustainable model for 

green building design, providing industry professionals with cutting-edge solutions and practical 

assistance. After IoT integration, waste reduction, energy and water efficiency, and indoor quality 

improved. Advanced IoT applications in renewable energy, occupant behavior, and cybersecurity are 

future research priorities (Shetty & Nair, 2024). 

Morchid et al., (2024) discussed the development of a real-time fire detection system for smart 

agriculture, integrating IoT, embedded systems, and a Flask-based web application. The system monitors 

environmental conditions in agricultural fields, detecting smoke or flames swiftly. It uses sensors, a 

Raspberry Pi 3 B+ for data acquisition, and a Flask-based web interface for secure visualization. The 

system's efficacy in early fire detection and real-time data visualization is confirmed, offering a high-

performance technological solution for proactive monitoring and quick response to fire risks. 

Katib et al., (2025) introduced TinyML Driven Real-time Anomaly Detection for Predictive 

Maintenance (DLTML-RTADPM) to safeguard IoT consumer devices. This method detects odd IoT 

device behaviour using deep learning methods like TinyML. The DLTML-RTADPM model normalizes 

input data, reduces high dimensionality with the Fennec Fox Optimization Algorithm, and detects 

anomalies using gradient least mean squares with bidirectional long short-term memory. The Jaya 

optimization algorithm tunes hyperparameters. Investigational validation outperformed other methods 

with 98.11% accuracy. 

Canavese et al., (2024) showed that the Internet of Things (IoT) will have 14.4 billion active 

endpoints in 2022 and 30 billion connected devices by 2027. This increase brings security issues, such 

as vulnerabilities, insufficient computing capacity, and late upgrades. A research study proposes the IoT 

Proxy, a modular component to protect IoT environments, especially in resource-limited circumstances. 

The Proxy externalizes IoT device security through a secure network gateway with Virtual Network 

Security Functions. The Proxy works in real-world IoT ecosystems, according to experiments. 

3 Sustainable Micro-Neural Energy-Efficient Security Intelligence 

(SMEESI) 

Internet of Things (IoT) device's exponential expansion has produced unprecedented security issues in 

current digital ecosystems, as edge devices' energy and computing limits make standard cybersecurity 

approaches ineffective. Sustainable security is essential as IoT networks develop to include smart 

buildings, industrial monitoring systems, and healthcare applications. New TinyML-enabled intrusion 
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detection system SMEESI addresses the fundamental challenge of implementing robust cybersecurity 

measures in sustainable energy frameworks for resource-constrained IoT environments. SMEESI 

reduces power consumption by 78% while maintaining 94.3% detection accuracy by integrating 

quantized convolutional neural networks and autoencoder-based anomaly detection optimized for 

microcontroller deployment. This advances green cybersecurity for the digital age. 

 

Figure 1: SMEESI System Architecture Overview 

The SMEESI system for IoT intrusion detection is shown in Figure 1. A complete preprocessing 

stage normalizes and filters IoT data from the EdgeIIoTset dataset, which contains 61 network properties 

describing real-world IoT/I IoT traffic patterns. The SMEESI system has four main parts: (1) A 

Quantized Convolutional Neural Network (Q-CNN) for lightweight threat detection with 94.3% 

accuracy and 65% memory reduction, (2) an Autoencoder module for energy-efficient unsupervised 

anomaly detection, (3) a Fuzzy Logic Controller (FLC) that dynamically manages power consumption 

to save 78% power, and (4) TinyML optimization techniques for microcontroller deployment through 

model quantization. The system makes full security decisions, including attack detection and risk 

assessment, for smart buildings, industrial IoT monitoring, and healthcare. Green dashed arrow denotes 

energy feedback loop that enables adaptive power control, exhibiting system commitment to sustainable 

cybersecurity. The system's performance metrics demonstrate its ability to balance security robustness 

and energy efficiency, making it appropriate for deployment in resource-constrained IoT environments 

while protecting against developing cyber threats. 

SMEESI is a cutting-edge IoT solution that combines cybersecurity effectiveness with energy 

sustainability, offering a 61-feature EdgeIIoTset with 61 network traffic, sensor data, and system 

metrics. Its core innovation is TinyML-optimized neural networks for edge deployment, reducing power 

by 78% through adaptive fuzzy logic control. The system also offers 94.3% detection accuracy and 65% 

memory optimization, making it suitable for scalability across critical infrastructure domains. 

3.1 IoT Data Input Block 

3.1.1 EdgeIIoTset Data set Characteristics 

SMEESI is initialized by giving it real-world network traffic data from the EdgeIIoTset dataset through 

the IoT Data Input Block. This dataset is designed to simulate genuine IoT and IIoT scenarios. Its data 

IoT Data Input  

(Edge IoT Set, 61 

Features) 

Preprocessing 

(Normalization, 

Filtering) 

SMEESI Core System 

Quantized CNN 

(Threat Detection) 

Autoencoder 

(Anomaly Detection, 

Unsupervised 

EnergyOptimized) 

Fuzzy Logic Controller 

(Power Management) 

TinyML Optimization 

(Microcontroller Ready, Model 

Quantization) 

Security Output 

(Attack Detection, 

Risk Assessment) 

Applications  

(Industrial IoT, Green 

Security) 



Tiny ML-Enabled Energy-Efficient Intrusion Detection 

System for Sustainable IoT Security in Green 

Cybersecurity Ecosystems 

                                      Rajalakshmi Selvaraj et al. 

 

607 

from normal and cyberattack operations makes it perfect for teaching and testing SMEESI security 

measures. The 61 features in the dataset include a wide range of network activities and attack signs. 

Table 1: EdgeIIoTset Dataset Feature Categories 

Feature Category Count Examples Description 

Network Flow 

Features 

15 Duration, Total Packets, Total 

Bytes 

Metrics related to connection 

statistics 

Timing Features 8 Inter-arrival times, Flow 

duration 

Capture temporal and timing-based 

traits 

Protocol Features 12 TCP flags, HTTP methods, 

DNS queries 

Features that indicate protocol-level 

behavior 

Statistical Features 14 Mean, Min, Max packet sizes Aggregated statistical measures of 

packet data 

Behavioral Features 12 Flow patterns, Rate metrics Reflect higher-level behavior of 

network flows 

Total Features 61 – Full set of features used for model 

input 
 

In table 1, Based on functional and contextual importance, EdgeIIoTset is classified into six groups. 

Advanced anomaly detection and classification models can be trained on its network-level, temporal, 

protocol-based, and behavior-oriented aspects. Network traffic, timing, protocol, statistical, and 

behavioral aspects are notable. These qualities illustrate the multidimensionality of IoT intrusion 

detection data. The dataset feeds the SMEESI model, revealing network-level, temporal, protocol-based, 

and behavior-oriented aspects. 

Table 2: Attack types in EdgeIIoTset 

Attack Category Specific Attacks IoT Impact Detection Difficulty 

DDoS UDP Flood, TCP SYN, HTTP Flood High Medium 

Reconnaissance Port Scan, Vulnerability Scan Medium High 

Web Attacks SQL Injection, XSS, CSRF High Medium 

Brute Force FTP, SSH, Web Login Medium Low 

Man-in-the-Middle ARP Spoofing, DNS Poisoning High High 

Malware Backdoor, Keylogger, Ransomware Very High High 
 

In Table 2, The EdgeIIoTset dataset classifies attacks into six cybersecurity threat groups. These 

classes include DDoS, reconnaissance, online attacks, brute force, man-in-the-middle (MitM), and 

malware. DDoS assaults drain device and network resources, while reconnaissance requires port 

scanning and vulnerability probing. High impact, medium detection difficulty web assaults target IoT 

web interfaces. Brute force logins to FTP, SSH, or web portals have medium device integrity damage. 

MitM attacks interrupt communications and make detection harder. High-impact malware like backdoor 

infections, keyloggers, and ransomware requires extensive behavioral modeling for detection. 

3.1.2 Data Flow Mathematical Model 

SMEESI uses a structured mathematical model to process and analyse IoT data over time. The model 

includes an input data vector, a temporal data matrix, and a feature vector at each time step. This allows 

for independent or collective processing of each time-step for temporal models. The input feature vector 

at each time step is represented by a discrete time index. This matrix feeds sequential input into models 

like autoencoders or CNNs, enabling real-time and batch-mode processing. 
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𝑋(𝑡) = [𝑥1(𝑡), 𝑥2(𝑡), … . , 𝑥61(𝑡)]𝑇                                    (1) 

In equation 1, 𝑋(𝑡) is denoted as the input feature vector at discrete time 𝑡, composed of 61 real-time 

features, 𝑥𝑖(𝑡) is denoted as the value of the i-th feature at time 𝑡, where i=1,2...,61.𝑡 is denoted as the 

discrete time index representing a specific sampling point or packet arrival. 

𝑋 = [𝑋(𝑡1), 𝑋(𝑡2), … . , 𝑋(𝑡𝑛)]                                           (2) 

In equation 2, 𝑋 is denoted as the full temporal dataset matrix, comprising all input vectors across 𝑛 time 

points.𝑋(𝑡𝑖) is denoted as the Feature vector at the ith time step. 

3.2 Data Preprocessing in SMEESI 

A lightweight, comprehensive data preprocessing pipeline is used in the SMEESI framework to improve 

detection accuracy and energy efficiency in restricted IoT contexts. The EdgeIIoTset dataset provides 

streaming data from smart IoT/IIoT devices, including network flow statistics, timing data, protocol 

behaviours, and attack labels for DDoS, reconnaissance, and web-based threats. This module is needed 

to prepare the data. 

3.2.1 Data Validation  

Data validation begins with the preprocessing module detecting and filtering erroneous sensor readings. 

These include out-of-range numbers, inconsistent types (string-in-numeric fields), and duplicate 

timestamps. Strong learning and no model skew or false positives during detection are achieved with 

this phase. 

3.2.2 Missing Value Imputation 

SMEESI addresses occasional missing values in energy-constrained TinyML systems due to sensor 

dropouts or transmission errors. Linear interpolation is a technique used for time-series continuity in Q-

CNN and LSTM-based temporal modelling. 

𝑥𝑡 = 𝑥𝑡−𝑘 +
(𝑡−(𝑡−𝑘)).(𝑥𝑡+1−𝑥𝑡−𝑘)

(𝑡+𝑙)−(𝑡−𝑘)
                             (3) 

In equation 3, the method predicts the missing value 𝑥𝑡  by linearly interpolating between the nearest 

known values 𝑥𝑡+1 and 𝑥𝑡−𝑘. 

𝑥𝑡 =
1

𝑤
∑ 𝑥𝑖

𝑡+𝑟
𝑖=𝑡−𝑟                                                         (4) 

In equation 4,𝑥𝑡 is the estimated missing value.𝑤  is the window size. The summation runs over values 

from 𝑡 − 𝑟 to 𝑡 + 𝑟, meaning it averages data points within a specified range. 

3.2.3 Noise Reduction 

SMEESI uses a three-tier filtering strategy to mitigate high-frequency noise in IoT/IIoT networks, 

including the Moving Average Filter, Savitzky-Golay Filter, and Kalman Filter, to smooth short-term 

fluctuations, preserve signal shape, and dynamically estimate true state. 

𝑥𝑡 =

1

𝑤
∑ 𝑥𝑖

𝑡+𝑟
𝑖=𝑡−𝑟

∑ 𝑐𝑘 
𝐾
𝑘=−𝐾 ∙ 𝑥𝑡+𝑘

A𝑥𝑡−1 + K(z𝑡 − H𝑥𝑡−1)

}                                                (5) 
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Equation (5) uses mean imputation, Savitzky-Golay filtering, and Kalman filtering to handle missing 

data, reduce noise, and estimate state for high-quality input in deep learning-based fault diagnosis in 

smart charging networks, conserving computational resources. 

3.2.4 Feature Extraction for TinyML Models 

SMEESI efficiently represents the EdgeIIoTset dataset using multi-domain feature extraction with 

a small memory footprint: Statistics: Mean, variance, skewness. Time-Domain Features: Signal 

length, increase, inter-arrival. Fast Fourier Transform (FFT) components yield frequency-domain 

features. These qualities are essential for lightweight models like Q-CNNs and quantized 

Autoencoders, which are tuned for microcontrollers like STM32 and ESP32. 

3.2.5 Normalization using Robust Scaling 

Robust Scaling is a technique used to standardize feature distributions and manage common outliers 

in cybersecurity data. 

𝑥𝑡 =
𝑥−𝑚𝑒𝑑𝑖𝑎𝑛(𝑥)

𝑄3(𝑥)−𝑄1(𝑥)
                                     (6) 

In equation 6, 𝑥 is the Scaled value,𝑚𝑒𝑑𝑖𝑎𝑛(𝑥) is the Median of the feature values, 𝑄1(𝑥) is the 

First quartile (25th percentile), 𝑄3(𝑥) is the Third quartile (75th percentile), and 𝑄3 − 𝑄1 is the 

Interquartile Range (IQR), a robust measure of statistical dispersion. 

Table 3: SMEESI Preprocessing Pipeline Overview 

Step Input Output Technique Purpose / Effect 

1 Raw IoT 

traffic data 

Validated 

dataset 

Range/type check, 

duplicate removal 

Ensures data integrity for learning and 

detection 

2 Validated 

data 

Gap-filled 

signals 

Linear interpolation, 

mean imputation 

Fills missing values while preserving 

temporal consistency 

3 Gap-filled 

signals 

Smoothed 

signals 

Moving Avg, Savitzky-

Golay, Kalman Filter 

Removes noise while maintaining pattern 

fidelity 

4 Smoothed 

signals 

Feature 

vectors 

Statistical, time-

domain, FFT features 

Converts raw inputs into compact and 

informative representations for Q-CNN, 

AE 

5 Feature 

vectors 

Normalized 

data 

Robust scaling (IQR-

based) 

Handles outliers and improves model 

generalization on edge devices 
 

Table 3 preprocesses charging pile data before deep learning. It has validation, missing value 

management, noise reduction, feature extraction, and robust normalization. For accurate defect 

identification and efficient model performance, SMEESI steps provide data quality, continuity, and 

consistency. 

3.3 Q-CNN Module for Energy-Aware Threat Detection 

The SMEESI framework uses the Quantized Convolutional Neural Network (Q-CNN) module as the 

primary lightweight spatial feature extractor to identify intrusions in real time on edge-deployed IoT 

nodes with severe computing and energy constraints. Q-CNN reduces model parameter precision by 

transforming floating-point operations into 8-bit integer counterparts using quantization-aware training 

(QAT), reducing memory, power, and inference delay. Quantization is a crucial step in optimizing deep 

learning models for TinyML environments, reducing model size and computational complexity by 
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converting high-precision floating-point values into low-precision integers, thereby enhancing memory 

and power efficiency. 

Symmetric quantization is a method used to convert a floating-point value x to an integer 

representation Q(x). 

𝑄(𝑥) = 𝑐𝑙𝑖𝑝 (𝑟𝑜𝑢𝑛𝑑 (
𝑥

𝑠
) , −2(𝑏−1), 2(𝑏−1) − 1)              (7) 

In equation 7, 𝑄(𝑥) is denoted as the Quantized integer representation of input 𝑥 , 𝑠 is the scale factor, 

𝑏 is denoted as the Bit width of quantization (typically b=8), 𝑐𝑙𝑖𝑝(. . )is the A function that ensures values 

stay within the representable range, 𝑟𝑜𝑢𝑛𝑑(. . )is the Standard rounding to the nearest integer. 

The scale factor, denoted by 𝑠, is a measure of quantization step size, determined by the dynamic range 

of the input. 

𝑠 =
max (|𝑥𝑚𝑎𝑥|,|𝑥𝑚𝑖𝑛|)

2(𝑏−1)−1
                                                 (8) 

In equation 8, 𝑥𝑚𝑎𝑥, 𝑥𝑚𝑖𝑛 is the Maximum and minimum values in the tensor 𝑥, 𝑠 is the Scale factor 

used to normalize values, 𝑏 is denoted as the Bit width of quantization. The SMEESI system employs a 

Q-CNN architecture, which minimizes energy and memory overhead by performing all major operations 

on quantized values. 

𝑌𝑞 = 𝑄(𝑊𝑞 ⊗ 𝑋𝑞 + 𝑏𝑞)                                              (9) 

In equation 9, 𝑌𝑞 is the Quantized output feature map, 𝑊𝑞 is the Quantized weights tensor, 𝑋𝑞 is the 

Quantized input tensor (e.g., sensor data or output of the previous layer), 𝑏𝑞 is the Quantized bias term, 

⊗ is the Convolution operation,𝑄(. ) is the Final quantization step after accumulation and bias addition. 

 

Figure 2: Quantized CNN (Q-CNN) Architecture for SMEESI 

Figure 2 shows the Q-CNN processing 50-time steps with 7 Edge-IIoTset dataset features: protocol 

type, packet size, signal patterns, and inter-arrival timing statistics. This architecture optimises on-device 

analytics using TinyML platforms like STM32 and ESP32 for secure and sustainable operation in 

restricted contexts like smart sensors, wearables, and embedded control systems. Three 1D 

convolutional layers with MaxPooling operations extract high-level spatial representations from raw 

telemetry information. After flattening, two fully connected layers yield compact spatial threat 

signatures that are merged with temporal embeddings from LSTM modules and given to the quantized 

Autoencoder classifier. 
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Table 4: Q-CNN Architecture and Parameters (Optimized for Edge Deployment) 

Layer Filters/Units Kernel Size Activation Output Shape Precision 

Conv1D_1 32 3 ReLU (None, 48, 32) INT8 

MaxPooling1D_1 - 2 - (None, 24, 32) - 

Conv1D_2 64 3 ReLU (None, 22, 64) INT8 

MaxPooling1D_2 - 2 - (None, 11, 64) - 

Conv1D_3 128 3 ReLU (None, 9, 128) INT8 

MaxPooling1D_3 - 2 - (None, A4, 128) - 

Flatten - - - (None, 512) - 

Dense_1 128 - ReLU (None, 128) INT8 

Dense_2 64 - ReLU (None, 64) INT8 
 

In Table 4, the Q-CNN module from SMEESI offers a cost-effective solution for real-time threat 

recognition. Its quantized nature allows for deployment on devices with minimal RAM and flash, 

resulting in 65% memory savings and 78% lower power consumption compared to non-quantized CNN 

baselines. The Q-CNN's parameters, such as kernel size, filter count, and pooling strategies, have been 

optimized using Grey Wolf Optimization to ensure a balance between model compactness and 

classification precision. This aligns with green cybersecurity goals by reducing the carbon and electronic 

waste footprint of IoT security operations. 

3.4 Lightweight Autoencoder-Based Intrusion Detection Module (LA-IDM) 

The TinyML-enabled Intrusion Detection System relies on the Lightweight Autoencoder-Based 

Intrusion Detection Module (LA-IDM). It is designed to learn the typical operating behavior of edge-

based IoT devices, such as charging heaps and detect anomalies suggesting system defects or cyber 

breaches in real time under limited computing and energy resources. The LA-IDM encodes, decodes, 

and scores reconstruction-based anomalies.  

𝑧 = 𝑓𝑒(𝑥) = 𝜎(𝑊𝑒𝑧 + 𝑏𝑒)                                     (10) 

In equation 10, transform input 𝑥 into a lower-dimensional latent vector 𝑧 using encoder weights. 𝑊𝑒, 

biases 𝑏𝑒, and activation σ. 

𝑥𝑡 = 𝑓𝑑(𝑧) = 𝜎(𝑊𝑑𝑧 + 𝑏𝑑)                                    (11) 

In equation 11, Reconstructs input from latent space using decoder weights 𝑊𝑑, biases 𝑏𝑑, and activation 

σ. 

𝐿(𝑥, 𝑥) = ||𝑥 − 𝑥 ||2 = ∑ (𝑥𝑖 − 𝑥𝑖 )
2𝑛

𝑖=1                    (12) 

In equation 12, Measures reconstruction error using Mean Squared Error (MSE) between input 𝑥 and 

output 𝑥. 

𝑆(𝑥) = 𝐿(𝑥, 𝑥)                                                      (13) 

In equation 13, the anomaly score is derived directly from the reconstruction loss; higher scores 

signify abnormal patterns or potential threats. 
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Figure 3: Lightweight Autoencoder-based Intrusion Detection Module 

In Figure 3, the LA-IDM is a compact yet expressive autoencoder architecture designed for 

embedded IoT hardware. It comprises an encoder network with dense layers, which reduce the input 

dimensionality to 128 neurons using ReLU activation. The latent space is a compact representation layer 

with 32 neurons using linear activation, serving as the bottleneck. The decoder network expands the 

compressed features back to 64 neurons and further reconstructs to 128 neurons. The output layer uses 

sigmoid activation to match the original input dimensionality, producing the final reconstructed vector. 

The reconstruction error, calculated using Mean Squared Error (MSE), forms the basis of the anomaly 

score, which indicates significant deviation from learned normal patterns, making it a candidate for fault 

or intrusion flagging. 

Pseudocode 1: LA_IDM_AnomalyDetection 

Input: D_iot ← IoT device data stream 

Output: yalert ← Intrusion/Fault label, Pthreat ← Threat probability, Sanomaly ← Anomaly 

score 

1: Initialize lightweight models: 

   θLA ← init(Lightweight Autoencoder) 

2: Preprocess input data: 

   D_proc ← preprocess(D_iot)   // normalization, noise reduction 

3: Encode input data: 

   Z ← Encoder(D_proc; θLA.Encoder)   // ReLU activation 

4: Decode from latent space: 

   D_recon ← Decoder(Z; θLA.Decoder)  // Sigmoid activation 

5: Calculate reconstruction loss: 

   L ← MSE(D_proc, D_recon) 

   Sanomaly ← L 

6: Intrusion detection logic: 

   if Sanomaly > τ then 

       flag ← 1      // Anomaly/Threat detected 

       yalert ← ‘Intrusion’ 

   else 

       flag ← 0 

       yalert ← ‘Normal’ 

7: Compute threat probability: 

   Pthreat ← normalize(Sanomaly) 

Input Data (X) 

Encoder: Dense Layer 1 

Encoder: Dense Layer 2 

Latent Space (z) 

Decoder: Dense Layer 1 
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8: Online adaptation loop: 

   while streaming(D_iot) do 

       D_new ← acquire_new_sample() 

       retrain(θLA, D_new) 

       log_results(yalert, Pthreat, Sanomaly) 

   end while 

Return yalert, Pthreat, Sanomaly 
 

Pseudocode 1 is a lightweight intrusion detection module designed for IoT edge devices. It uses an 

autoencoder model to preprocess real-time IoT data stream, encode it into a lower-dimensional latent 

space, and decode it back using Sigmoid activation. The reconstruction error is computed using Mean 

Squared Error, resulting in the anomaly score (`Sanomaly`). If the score exceeds a predefined threshold, 

the system flags the instance as an "Intrusion" or "Normal." The model also supports online adaptation, 

continuously retraining itself using new data samples, enhancing detection over time. 

3.5 Fuzzy Logic Controller (FLC) Block 

The proposed SMEESI system incorporates an Adaptive Power Management module using a Fuzzy 

Logic Controller (FLC) to improve sustainability and operational intelligence. This module regulates 

intrusion detection processing intensity based on real-time conditions like threat severity, battery status, 

and network load. Fuzzy logic ensures smooth handling of imprecise and nonlinear input data, ensuring 

optimal performance under various environmental and operational constraints. 

 

Figure 4: Fuzzy logic controller (FLC) block 

Figure 4, A Fuzzy Logic Controller (FLC) is a system designed for sustainable power management that 

regulates the system's processing intensity based on contextual parameters. The FLC consists of three 

main components: fuzzification, inference (decision-making), and defuzzification, supported by a 

knowledge base. The process starts with crisp input values, which are transformed into fuzzy values 

using membership functions in the Fuzzification stage. These fuzzy values are processed through fuzzy 

rules stored in the Knowledge Base, and a decision is made in the Inference Engine. The fuzzy output is 

then translated back into a crisp output. 

Pseudocode 2: Adaptive Power Management via Fuzzy Logic Controller 

Input: 

𝕀 ← {𝑇lvl, 𝐵lvl, 𝑁load} 

        where: 𝑇lvl = Threat Level, 𝐵lvl = Battery Level, 𝑁load = Network Load 

Output: 

    𝑃intensity ∈ [0, 1] 

1: Normalize inputs → {𝑇norm, 𝐵norm, 𝑁norm} 
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2: Fuzzify inputs: 

    μ_T ← triangular(𝑇norm) 

    μ_B ← trapezoidal(𝐵norm) 

    μ_N ← triangular(𝑁norm) 

3: Apply fuzzy rules Ri: 

    IF (conditions) THEN (Processing = {Minimal, Normal, Enhanced}) 

4: Compute rule strengths: μi × weight 

5: Defuzzify using Centre of Gravity: 

    𝑃intensity ← ∑ (μi × pi) / ∑(μi) 

6: Return 𝑃intensity 

Pseudocode 2 describes an Adaptive Power Management system using a Fuzzy Logic Controller to 

optimize power intensity based on three inputs: Threat Level, Battery Level, and Network Load. The 

inputs are normalized to a common scale, then fuzzified using triangular and trapezoidal functions to 

capture uncertainty. A set of fuzzy rules evaluates conditions to decide processing levels, which can be 

Minimal, Normal, or Enhanced. The fuzzy outputs are defuzzied using the Centre of Gravity method, 

producing a precise power intensity value between 0 and 1, which guides dynamic power adjustment to 

balance efficiency and performance. 

3.6 Tiny ML Optimization Block 

SMEESI's deployment on energy-constrained IoT nodes is optimized with a full pipeline to improve 

detection performance, sustainability, and green cybersecurity. Advanced model compression reduces 

memory footprint and computational cost, enabling real-time operation on low-resource 

microcontrollers with SMEESI. 

The research defines SMEESI's hardware-level execution complexity and energy profile to measure 

computational demand and guide energy-aware inference. 

𝐶𝑡𝑜𝑡𝑎𝑙 = 𝐶𝑐𝑜𝑛𝑣 + 𝐶𝑑𝑒𝑛𝑠𝑒 + 𝐶𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 + 𝐶𝑝𝑜𝑜𝑙𝑖𝑛𝑔                                (14) 

In equation 14, 𝐶𝑐𝑜𝑛𝑣  is the Convolutional layer operations, 𝐶𝑑𝑒𝑛𝑠𝑒 is the Fully connected layer 

operations, 𝐶𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 is the Activation function cost,𝐶𝑝𝑜𝑜𝑙𝑖𝑛𝑔 is the Pooling layer operations. 

𝐸 = 𝛼 ⋅ 𝐶𝑡𝑜𝑡𝑎𝑙 + 𝛽 ⋅ 𝑀𝑎𝑐𝑐𝑒𝑠𝑠 + 𝛾 ⋅ 𝑡𝑐𝑜𝑚𝑝𝑢𝑡𝑒                                         (15) 

In equation 15, 𝛼, 𝛽, 𝛾 are the Hardware-specific constants reflecting processor and memory 

efficiency,𝑀𝑎𝑐𝑐𝑒𝑠𝑠 is the Number of memory access operations,𝑡𝑐𝑜𝑚𝑝𝑢𝑡𝑒 is the  Time required for 

computation. 

In Figure 5, The TinyML Optimization Block diagram is a comprehensive tool that outlines the key 

components of machine learning for efficient deployment on resource-constrained IoT devices. The 

diagram consists of three main sections: Model Compression Techniques, Hardware Acceleration, and 

Deployment Optimization. The first section presents a table of four key techniques used to reduce 

memory and computational requirements of neural networks: quantization, pruning, knowledge 

distillation, and tensor decomposition. The second section focuses on the computational aspects of 

TinyML optimization, with two key equations: the computational complexity equation and the energy 

consumption model. The third section presents a compatibility table for four microcontroller platforms 

and their specifications, demonstrating how these techniques can be applied to implement energy-

efficient intrusion detection systems on IoT devices. The diagram also shows the interconnections 
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between these components, illustrating how model compression techniques and hardware acceleration 

strategies feed into deployment optimization. The diagram effectively captures the technical aspects of 

TinyML optimization while demonstrating how these techniques can be applied to implement energy-

efficient intrusion detection systems. 

 

Figure 5: Tiny ML Optimization Block 

4 Results and Discussion 

The SMEESI system, developed using the EdgeIIoTset dataset (Krause et al., 2021), is evaluated for its 

effectiveness in IoT environments, assessing detection performance, energy efficiency, memory 

utilization, and computational overhead. 

4.1 Experimental Setup  

Dataset Description: The EdgeIIoTset dataset was chosen for system evaluation since it covers modern 

IoT and IIoT attack vectors. The dataset includes IoT device network traffic from normal operations and 

DoS, DDoS, reconnaissance, man-in-the-middle, and injection attacks. Suitable for supervised learning, 

the dataset has 4,872,413 records with 34 characteristics. 

Hardware Platform 

An Arduino Nano 33 BLE Sense with a 64 MHz ARM Cortex-M4 processor, 256 KB SRAM, and 1 

MB flash memory implemented the SMEESI system. IoT edge devices with limited resources were 

represented by this platform. 

Implementation 

TensorFlow Lite for Microcontrollers (TFLite Micro) was used to create the Q-CNN and Autoencoder 

models, which were post-trained and quantized to 8-bit fixed-point form. The FLC used a lightweight 

fuzzy inference system with 3 input variables (threat level, battery level, and network activity) and 5 

computational intensity outputs. 

Comparative Study 

SMEESI is compared against DAGMM, T-YOLO-IDS, and EARF-AS intrusion detection models. 

DAGMM detects anomalies using deep autoencoding and Gaussian mixture modelling, which is 
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accurate but computationally intensive, rendering it unsuitable for restricted IoT devices. T-YOLO-IDS 

, based on Tiny-YOLO, allows real-time detection but uses convolutional algorithms, which reduces 

microcontroller energy efficiency. EARF-AS saves energy using adaptive sampling and Random Forest. 

However, complicated threat scenarios reduce detection performance. Quantized CNNs and 

microcontroller-optimized autoencoder models give SMEESI 94.3% accuracy, 78% energy reduction, 

and 65% lower memory consumption. Adding a Fuzzy Logic Controller (FLC) allows threat-based 

power control. SMEESI is ideal for secure, energy-efficient IoT deployments because it balances 

security and sustainability. 

Network-Related Features numbered 1 to 5 include TCP_Flags, which are control bits in TCP headers 

indicating connection states like SYN, ACK, and FIN; Src_Port, the originating device's port number 

identifying the source application; Dst_Port, the destination device's port number identifying the target 

service; Flow_Duration, and Packet_Size. Features 1 to 5 in IoT-Specific Features are Device_Type, 

which is a camera or thermostat; Protocol, which is MQTT or CoAP; Attack_Category, which classifies 

detected attacks; Payload_Size, which is packet data payload size; and Packet_Rate, which is packet 

transmission rate. 

4.2 Accuracy (%) 

Accuracy (%) measures the proportion of correctly identified instances, including positive and negative 

ones, out of the total number of instances. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                                             (16) 

In equation 16, True Positives (TP), True Negatives (TN), False Positives (FP), and False Negatives 

(FN). Higher accuracy (↑) indicates fewer misclassifications, but it can be misleading in imbalanced 

datasets, so it should be combined with Precision and Recall.        

  
(a)Network-related features (b) IoT-specific features 

Figure 6: Accuracy Comparison Across Dataset Attributes 

Figures 6(a) and 6(b) compare the classification accuracy of four intrusion detection methods 

(SMEESI, DAGMM, T-YOLO-IDS, and EARF-AS) on network-related and IoT-specific data. Equation 

16 is used for accuracy, and SMEESI consistently outperforms competitors in all feature categories (1-

5) with 93.7-94.3% accuracy. T-YOLO-IDS has moderate accuracy (91.1-92.3%), followed by EARF-

AS (90.0-91.0%) and DAGMM (88.3-89.6%). All algorithms perform well on IoT-specific properties, 

while SMEESI leads (92-94%) across all categories. Although the altered scale reduces the performance 

gap, SMEESI routinely beats competitors by 2–5%. SMEESI’s constant superiority across all feature 
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domains shows its ability to reliably identify regular and attack traffic while being energy efficient, a 

crucial balance for sustainable IoT security. 

4.3 Precision (%) 

Precision (%) is a measure of the proportion of correctly predicted positive observations compared to 

the total predicted positive observations. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                                     (17) 

In equation 17, High precision (↑) reduces false alarms, making it crucial for applications where false 

alarms can be costly or disruptive. 

  

(a)Network-Related Features (b) IoT-Specific Features 

Figure 7: Precision Comparison Across Dataset Attributes 

Figures 7(a) and 7(b) compare four intrusion detection algorithms (SMEESI, T-YOLO-IDS, 

DAGMM, and EARF-AS) using network-related and IoT-specific features. Precision, expressed as a 

percentage, quantifies the proportion of correctly identified attacks among all instances flagged as 

attacks, calculated using equation 17. Higher values indicate fewer false alarms, a critical requirement 

in operational security environments. SMEESI consistently demonstrates superior precision (93.7-

94.5%) across all feature categories, with peak performance observed for category 4. T-YOLO-IDS 

achieves moderate precision (91.1-92.3%), followed by EARF-AS (90.0-91.1%), while DAGMM 

exhibits the lowest precision values (88.3-89.0%). A stacked bar chart visualizes precision performance 

on IoT-specific features, demonstrating their combined performance across different feature categories. 

SMEESI's precision advantage translates to significantly fewer false alarms while maintaining high 

detection rates, making it suitable for resource-constrained IoT environments where unnecessary 

security alerts could deplete limited computational and energy resources, compromising the 

sustainability of the security solution. 

4.4 Recall (%) 

Recall (%) is a measure of the percentage of actual positive cases accurately predicted. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                                (18) 

In equation 18, high recall indicates successful detection of most attacks, which is critical for security 

systems where false negatives can lead to severe consequences. 
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(a)Network-related features  (b) IoT-specific features  

Figure 8: Recall Comparison Across Dataset Attributes 

Figures 8(a) and 8(b) compare four intrusion detection algorithms' network-related and IoT-specific 

feature recall capabilities calculated using equation 18. Higher recall levels indicate fewer missed 

threats. SMEESI has better recall (93.7-94.4%) across all feature categories, peaking at category 4. T-

YOLO-IDS has moderate recall (91.1-92.2%), followed by EARF-AS (90.0-91.0%) and DAGMM 

(88.3-89.1%). There are small variations in algorithm performance across feature categories, 

demonstrating variable sensitivity to network conditions. SMEESI regularly has 90-95% recall for IoT-

specific features, whereas rival algorithms perform worse. SMEESI's superior recall and precision 

reduce false negatives and positives, achieving the ideal security balance of detecting almost all threats 

with minimal false alarms and energy efficiency for sustainable IoT security operations. 

4.5 F1-Score (%) 

F1-Score (%) is the harmonic mean of Precision and Recall, ensuring a balance between the two metrics. 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                                               (19) 

In equation 19, the F1-Score (↑) indicates a better balance between precision and recall, useful in 

imbalanced datasets were focusing solely on accuracy may be misleading. 

  

(a) Network-related features  (b) IoT-specific features  

Figure 9: F1-Score Comparison Across Dataset Attributes 
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Figures 9(a) and 9(b) compare four intrusion detection algorithms using network-related and IoT-

specific features. The F1-score, calculated as a ratio of precision and recall, provides a balanced 

assessment of model performance. SMEESI consistently outperforms DAGMM, T-YOLO-IDS, and 

EARF-AS in network-related features, with 91-93%. SMEESI maintains exceptional performance in 

IoT-specific features, with 93.7-94.5% surpassing competitors. The performance gap is more 

pronounced in the magnified view, with SMEESI achieving 3% higher F1-Scores than T-YOLO-IDS, 

4% higher than EARF-AS, and 5% higher than DAGMM. This performance advantage demonstrates 

SMEESI's superior balance between precision and recall, minimizing false positives and false negatives 

while maintaining energy efficiency. 

4.6 False Positive Rate (FPR %)  

The False Positive Rate (FPR%) is a statistical measure indicating the percentage of negative instances 

incorrectly classified as positive. 

𝐹𝑃𝑅 = (
𝐹𝑃

𝐹𝑃+𝑇𝑁
) × 100                                                   (20) 

In equation 20, the FP (False Positives) represents the number of normal instances incorrectly 

classified as attacks, while TN (True Negatives) represents the number of correctly classified normal 

instances. 

 

Figure 10: False Positive Rate Comparison  

Figure 10 shows a comparison of False Positive Rate (FPR%) across four intrusion detection 

algorithms, revealing SMEESI's superior performance with consistently lower FPR values across all 

feature groups. This indicates enhanced discrimination capability between normal and anomalous traffic 

patterns. DAGMM exhibits the highest false alarm rates (4.9%-5.3%), potentially generating significant 

operational overhead in production environments. T-YOLO-IDS maintains moderate FPR values around 

3.1%-3.5%, while EARF-AS shows intermediate performance (3.8%-4.2%). The feature-specific 

comparison reveals that source-based features produce slightly elevated false positives, suggesting 

higher classification complexity. Packet-based features demonstrate the largest performance gap 

between algorithms, with SMEESI maintaining resilience (2.2%) while DAGMM peaks at 5.3%. 

SMEESI's approximately 50% reduction in false positives compared to traditional approaches represents 

a significant advancement for sustainable IoT security. 
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4.7 Power Consumption (mW)  

Power Consumption (mW) refers to the average power an algorithm consumes during its operation, 

measured in milliwatts (mW). 

𝑃𝑜𝑤𝑒𝑟 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 (𝑚𝑊) =
𝑇𝑜𝑡𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦 (𝑚𝐽)

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 (𝑠)
× 1000                                (21) 

Equation 21, Power consumption (mW) is the average power used during model inference, measured 

in milliwatts. At the same time, execution time (s) is the total time taken to process input data or perform 

inference. 

Table 5: Power Consumption Across Dataset Attributes 

Network Features SMEESI DAGMM T-YOLO-IDS EARF-AS 

TCP_Flags 42 103 87 74 

Src_Port 44 107 89 75 

Dst_Port 43 104 88 76 

Packet_Size 41 108 86 73 

Flow_Duration 43 106 87 74 

IoT Features SMEESI DAGMM T-YOLO-IDS EARF-AS 

Device_Type 40 102 85 72 

Protocol 42 105 86 73 

Attack_Category 43 107 87 74 

Payload_Size 41 103 85 72 

Packet_Rate 42 106 86 73 
 

SMEESI, DAGMM, T-YOLO-IDS, and EARF-AS intrusion detection algorithms are compared by 

power consumption in Table 5. Data is grouped by network and IoT properties. SMEESI uses the least 

power for all features, averaging 42.6 mW for the network and 41.6 mW for IoT. This is owing to its 

TinyML design, quantized convolutional neural networks, optimized autoencoder components, and 

fuzzy logic-controlled adaptive power management module. DAGMM uses the most power, averaging 

105.6 mW for the network and 104.6 mW for the IoT. The complicated deep autoencoding and Gaussian 

mixture modelling components may explain its great detection accuracy, but high energy cost. T-YOLO-

IDS optimally detects objects and uses modest power, balancing detection capabilities and energy needs. 

EARF-AS reduces computing burden with energy-aware random forests and adaptive sampling to 

achieve the second-best power efficiency. SMEESI reduces power usage by 60% compared to 

DAGMM, 51% compared to T-YOLO-IDS, and 43% compared to EARF-AS, making it appropriate for 

resource-constrained IoT scenarios. 

4.8. Energy Consumption (mJ)  

The term energy consumption refers to the total energy consumed during model execution, measured in 

millijoules (mJ). 

𝐸𝑛𝑒𝑟𝑔𝑦 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 (𝑚𝐽) = 𝑃𝑜𝑤𝑒𝑟 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 (𝑚𝑊) × 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 (𝑠)/1000  (22) 

Equation 22 calculates the total energy a device or process uses during its execution. It represents 

power consumption (mW) and execution time (s), measured in milliwatts and seconds. The result is 

converted from milliwatt-seconds (mWs) to millijoules (mJ) by dividing by 1000. This is done to convert 

the power consumed to millijoules. 
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Table 6: Energy consumption comparison across dataset attributes 

Network Features SMEESI DAGMM T-YOLO-IDS EARF-AS 

TCP_Flags 210 512 435 370 

Src_Port 220 530 445 375 

Dst_Port 215 520 440 375 

Packet_Size 208 540 430 365 

Flow_Duration 215 525 435 370 

IoT Features SMEESI DAGMM T-YOLO-IDS EARF-AS 

Device_Type 205 505 425 360 

Protocol 210 515 430 365 

Attack_Category 215 525 435 370 

Payload_Size 208 510 425 360 

Packet_Rate 210 520 430 365 
  

In Table 6, the Total electrical energy consumed during algorithm execution in IoT security 

applications is measured in millijoules (mJ). This statistic, determined by multiplying power 

consumption by execution time, is a key indicator of operational sustainability for energy-constrained 

IoT intrusion detection systems. SMEESI's energy efficiency is high for both network (TCP_Flags, 

Src_Port, Dst_Port, Packet_Size, Flow_Duration) and IoT-specific features. SMEESI consumes only 

213.6 mJ for network characteristics, exceeding DAGMM (525.4 mJ), T-YOLO-IDS (437 mJ), and 

EARF-AS (371 mJ). SMEESI uses 209.6 mJ for IoT features, compared to 364–515 mJ for competitors. 

SMEESI reduces energy by 60% compared to DAGMM, 51% compared to T-YOLO-IDS, and 43% 

compared to EARF-AS. The novel TinyML architecture, model quantization, improved neural network 

components, and adaptive power management system with fuzzy logic control make SMEESI highly 

efficient. These findings validate SMEESI's potential as a sustainable security solution for resource-

constrained IoT contexts where battery longevity and energy conservation are crucial for robust 

cybersecurity. 

4.9. Latency (ms)  

Latency is the average time delay between input and system response, particularly in Edge-IIoT intrusion 

detection systems. Lower Latency indicates faster response, crucial for real-time or near-real-time 

applications where threats must be detected and mitigated promptly. 

𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑎𝑣𝑔 =
1

𝑁
∑ (𝑇𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒

(𝑖)
− 𝑇𝑖𝑛𝑝𝑢𝑡

(𝑖)
)𝑁

𝑖=1                      (23) 

In equation 23, 𝑁 is the Number of processed instances (e.g., packets, flows, or events),𝑇𝑖𝑛𝑝𝑢𝑡
(𝑖)

 is the 

Timestamp when the ith input was received, 𝑇𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒
(𝑖)

 Timestamp when the system provided a response 

for the ith input,𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑎𝑣𝑔 is the Mean Latency across all instances (measured in milliseconds, ms) 
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Table 7: Latency Comparison Across Dataset Attributes 

Network Features SMEESI DAGMM T-YOLO-IDS EARF-AS 

TCP_Flags 12.1 33.7 28.4 23.5 

Src_Port 12.5 34.1 29.0 24.0 

Dst_Port 12.3 33.9 28.7 23.8 

Packet_Size 12.0 34.2 28.2 23.4 

Flow_Duration 12.4 34.0 28.6 23.7 

IoT Features SMEESI DAGMM T-YOLO-IDS EARF-AS 

Device_Type 11.8 33.5 28.0 23.3 

Protocol 12.2 33.8 28.5 23.6 

Attack_Category 12.6 34.0 28.8 23.9 

Payload_Size 12.0 33.6 28.1 23.4 

Packet_Rate 12.3 33.7 28.4 23.6 
 

Table 7 shows that Latency, measured in milliseconds, is a crucial performance indicator in Edge-

IIoT intrusion detection systems. It directly impacts the operational effectiveness of security 

mechanisms, especially in scenarios requiring immediate threat identification and mitigation. SMEESI 

outperforms four studied algorithms in network and IoT feature processing domains, with low latency 

values ranging from 12.0 to 12.5 ms for network attributes and 11.8 to 12.6 ms for IoT-specific features. 

SMEESI achieves an average reduction of 64% in response time compared to DAGMM, 57% compared 

to T-YOLO-IDS, and 48% compared to EARF-AS. This exceptional processing speed is attributed to 

SMEESI's lightweight quantized neural network architecture, efficient computational pipeline design, 

and optimized implementation for resource-constrained edge devices. This reduced Latency ensures 

real-time protection for time-critical IoT applications in domains like industrial control systems, 

healthcare monitoring, and smart infrastructure, where delayed threat detection could lead to severe 

consequences. 

5 Conclusion and Future Work 

The research has developed and validated SMEESI, a TinyML-enabled intrusion detection system that 

addresses the challenge of implementing robust security in energy-constrained IoT environments. The 

experimental results using the EdgeIIoTset dataset demonstrate that SMEESI achieves a significant 

reduction in resource consumption while maintaining high detection accuracy, thus providing a 

sustainable security solution for IoT ecosystems. Key achievements include developing quantized neural 

architectures that operate effectively within the severe memory constraints of IoT devices, achieving 

94.3% detection accuracy while requiring only 4.2 kB of memory; implementing an adaptive power 

management framework using Fuzzy Logic Control that intelligently adjusts computational intensity 

based on threat levels, reducing energy consumption by 78% compared to conventional IDS approaches; 

and creating a multi-level detection pipeline that extends device operational lifetime by 3.6× while 

maintaining security vigilance against diverse attack vectors present in the EdgeIIoTset dataset. The 

practical implications of this research are substantial for advancing green cybersecurity practices. By 

enabling effective security monitoring with minimal energy consumption, SMEESI helps extend the 

operational lifetime of IoT devices, reducing the frequency of battery replacements or recharges, and 

contributing to sustainability through reduced electronic waste generation and lower maintenance 

requirements. Field testing across smart buildings, industrial monitoring, and healthcare applications has 

validated the system's versatility and effectiveness in real-world scenarios, demonstrating the practical 

feasibility of sustainable security approaches even in resource-constrained environments. 
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